import logging import pathlib import gradio as gr import pandas as pd from gt4sd.algorithms.generation.moler import MoLeR, MoLeRDefaultGenerator from gt4sd.algorithms.registry import ApplicationsRegistry from utils import draw_grid_generate logger = logging.getLogger(__name__) logger.addHandler(logging.NullHandler()) TITLE = "MoLeR" def run_inference( algorithm_version: str, scaffolds: str, beam_size: int, number_of_samples: int, seed: int, ): config = MoLeRDefaultGenerator( algorithm_version=algorithm_version, scaffolds=scaffolds, beam_size=beam_size, num_samples=4, seed=seed, num_workers=1, ) model = MoLeR(configuration=config) samples = list(model.sample(number_of_samples)) seed_mols = [] if scaffolds == "" else scaffolds.split(".") return draw_grid_generate(seed_mols, samples) if __name__ == "__main__": # Preparation (retrieve all available algorithms) all_algos = ApplicationsRegistry.list_available() algos = [ x["algorithm_version"] for x in list(filter(lambda x: TITLE in x["algorithm_name"], all_algos)) ] # Load metadata metadata_root = pathlib.Path(__file__).parent.joinpath("model_cards") examples = pd.read_csv(metadata_root.joinpath("examples.csv"), header=None).fillna( "" ) with open(metadata_root.joinpath("article.md"), "r") as f: article = f.read() with open(metadata_root.joinpath("description.md"), "r") as f: description = f.read() demo = gr.Interface( fn=run_inference, title="MoLeR (MOlecule-LEvel Representation)", inputs=[ gr.Dropdown(algos, label="Algorithm version", value="v0"), gr.Textbox( label="Scaffolds", placeholder="CC(C#C)N(C)C(=O)NC1=CC=C(Cl)C=C1", lines=1, ), gr.Slider(minimum=1, maximum=5, value=1, step=1, label="Beam_size"), gr.Slider( minimum=1, maximum=50, value=10, label="Number of samples", step=1 ), gr.Number(value=42, label="Seed", precision=0), ], outputs=gr.HTML(label="Output"), article=article, description=description, examples=examples.values.tolist(), ) demo.launch(debug=True, show_error=True)