Spaces:
Sleeping
Sleeping
import logging | |
import pathlib | |
from typing import List | |
import gradio as gr | |
import numpy as np | |
import pandas as pd | |
from gt4sd.algorithms.conditional_generation.paccmann_rl import ( | |
PaccMannRL, | |
PaccMannRLOmicBasedGenerator, | |
PaccMannRLProteinBasedGenerator, | |
) | |
from gt4sd.algorithms.generation.paccmann_vae import PaccMannVAE, PaccMannVAEGenerator | |
from gt4sd.algorithms.registry import ApplicationsRegistry | |
from utils import draw_grid_generate | |
logger = logging.getLogger(__name__) | |
logger.addHandler(logging.NullHandler()) | |
def run_inference( | |
algorithm_version: str, | |
inference_type: str, | |
protein_target: str, | |
omics_target: str, | |
temperature: float, | |
length: float, | |
number_of_samples: int, | |
): | |
if inference_type == "Unbiased": | |
algorithm_class = PaccMannVAEGenerator | |
model_class = PaccMannVAE | |
target = None | |
elif inference_type == "Conditional": | |
if "Protein" in algorithm_version: | |
algorithm_class = PaccMannRLProteinBasedGenerator | |
target = protein_target | |
elif "Omic" in algorithm_version: | |
algorithm_class = PaccMannRLOmicBasedGenerator | |
try: | |
test_target = [float(x) for x in omics_target.split(" ")] | |
except Exception: | |
raise ValueError( | |
f"Expected 2128 space-separated omics values, got {omics_target}" | |
) | |
if len(test_target) != 2128: | |
raise ValueError( | |
f"Expected 2128 omics values, got {len(target)}: {target}" | |
) | |
target = f"[{omics_target.replace(' ', ',')}]" | |
else: | |
raise ValueError(f"Unknown algorithm version {algorithm_version}") | |
model_class = PaccMannRL | |
else: | |
raise ValueError(f"Unknown inference type {inference_type}") | |
config = algorithm_class( | |
algorithm_version.split("_")[-1], | |
temperature=temperature, | |
generated_length=length, | |
) | |
model = model_class(config, target=target) | |
samples = list(model.sample(number_of_samples)) | |
return draw_grid_generate(samples=samples, n_cols=5) | |
if __name__ == "__main__": | |
# Preparation (retrieve all available algorithms) | |
all_algos = ApplicationsRegistry.list_available() | |
algos = [ | |
x["algorithm_application"].split("Based")[0].split("PaccMannRL")[-1] | |
+ "_" | |
+ x["algorithm_version"] | |
for x in list(filter(lambda x: "PaccMannRL" in x["algorithm_name"], all_algos)) | |
] | |
# Load metadata | |
metadata_root = pathlib.Path(__file__).parent.joinpath("model_cards") | |
examples = pd.read_csv(metadata_root.joinpath("examples.csv"), header=None).fillna( | |
"" | |
) | |
with open(metadata_root.joinpath("article.md"), "r") as f: | |
article = f.read() | |
with open(metadata_root.joinpath("description.md"), "r") as f: | |
description = f.read() | |
demo = gr.Interface( | |
fn=run_inference, | |
title="PaccMannRL", | |
inputs=[ | |
gr.Dropdown(algos, label="Algorithm version", value="Protein_v0"), | |
gr.Radio( | |
choices=["Conditional", "Unbiased"], | |
label="Inference type", | |
value="Conditional", | |
), | |
gr.Textbox( | |
label="Protein target", | |
placeholder="MVLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTT", | |
lines=1, | |
), | |
gr.Textbox( | |
label="Gene expression target", | |
placeholder=f"{' '.join(map(str, np.round(np.random.rand(2128), 2)))}", | |
lines=1, | |
), | |
gr.Slider(minimum=0.5, maximum=2, value=1, label="Decoding temperature"), | |
gr.Slider( | |
minimum=5, | |
maximum=400, | |
value=100, | |
label="Maximal sequence length", | |
step=1, | |
), | |
gr.Slider( | |
minimum=1, maximum=50, value=10, label="Number of samples", step=1 | |
), | |
], | |
outputs=gr.HTML(label="Output"), | |
article=article, | |
description=description, | |
examples=examples.values.tolist(), | |
) | |
demo.launch(debug=True, show_error=True) | |