import logging import pathlib import gradio as gr import pandas as pd from gt4sd.algorithms.generation.torchdrug import ( TorchDrugGenerator, TorchDrugGCPN, TorchDrugGraphAF, ) from gt4sd.algorithms.registry import ApplicationsRegistry from utils import draw_grid_generate logger = logging.getLogger(__name__) logger.addHandler(logging.NullHandler()) TITLE = "MoLeR" def run_inference(algorithm: str, algorithm_version: str, number_of_samples: int): if algorithm == "GCPN": config = TorchDrugGCPN(algorithm_version=algorithm_version) elif algorithm == "GraphAF": config = TorchDrugGraphAF(algorithm_version=algorithm_version) else: raise ValueError(f"Unsupported model {algorithm}.") model = TorchDrugGenerator(configuration=config) samples = list(model.sample(number_of_samples)) return draw_grid_generate(samples=samples, n_cols=5) if __name__ == "__main__": # Preparation (retrieve all available algorithms) all_algos = ApplicationsRegistry.list_available() algos = [ x["algorithm_version"] for x in list(filter(lambda x: "TorchDrug" in x["algorithm_name"], all_algos)) ] # Load metadata metadata_root = pathlib.Path(__file__).parent.joinpath("model_cards") examples = pd.read_csv(metadata_root.joinpath("examples.csv"), header=None).fillna( "" ) with open(metadata_root.joinpath("article.md"), "r") as f: article = f.read() with open(metadata_root.joinpath("description.md"), "r") as f: description = f.read() demo = gr.Interface( fn=run_inference, title="TorchDrug (GCPN and GraphAF)", inputs=[ gr.Dropdown(["GCPN", "GraphAF"], label="Algorithm", value="GCPN"), gr.Dropdown( list(set(algos)), label="Algorithm version", value="zinc250k_v0" ), gr.Slider( minimum=1, maximum=50, value=10, label="Number of samples", step=1 ), ], outputs=gr.HTML(label="Output"), article=article, description=description, examples=examples.values.tolist(), ) demo.launch(debug=True, show_error=True)