Spaces:
Sleeping
Sleeping
File size: 1,513 Bytes
1ef8213 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 |
import os
import gradio as gr
from transformers import pipeline, DetrForObjectDetection, DetrConfig, DetrImageProcessor
# Initialize the configuration for DetrForObjectDetection
config = DetrConfig.from_pretrained("facebook/detr-resnet-50")
# Create the model for object detection using the specified configuration
model = DetrForObjectDetection.from_pretrained("facebook/detr-resnet-50", config=config)
# Initialize the image processor for DETR
image_processor = DetrImageProcessor.from_pretrained("facebook/detr-resnet-50")
# Initialize the object detection pipeline with the model and image processor
od_pipe = pipeline(task='object-detection', model=model, image_processor=image_processor)
def get_pipeline_prediction(pil_image):
# Run the object detection pipeline on the input image
pipeline_output = od_pipe(pil_image)
# You might need to implement or adjust the rendering function based on the `pipeline_output`
# The `render_results_in_image` function is assumed here to draw bounding boxes and labels on the input image,
# but you'll need to define it according to your specific needs.
# For now, the output is directly returned since the question doesn't define `render_results_in_image`.
return pipeline_output
demo = gr.Interface(
fn=get_pipeline_prediction,
inputs=gr.Image(label="Input image",
type="pil"),
outputs=gr.JSON(label="Detected objects") # Adjusted to show JSON output if rendering function is not defined
)
demo.launch() |