File size: 679 Bytes
54ef3d0
03e6add
c21a752
dba19bd
 
c21a752
bf4a295
c21a752
bf4a295
c21a752
 
 
 
bf4a295
c21a752
 
 
 
 
 
 
 
bf4a295
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
import os
import gradio as gr

od_pipe = pipeline("object-detection", "./models/facebook/detr-resnet-50")

def get_pipeline_prediction(pil_image):
    # first get the pipeline output given the pil image
    pipeline_output = od_pipe(pil_image)
    # Then Process the image using the pipeline output
    processed_image = render_results_in_image(pil_image,
                                            pipeline_output)
    return processed_image


demo = gr.Interface(
  fn=get_pipeline_prediction,
  inputs=gr.Image(label="Input image", 
                  type="pil"),
  outputs=gr.Image(label="Output image with predicted instances",
                   type="pil")
)

demo.launch