Object_detection / app_v1.py
Gabolozano's picture
Rename app.py to app_v1.py
425f707 verified
import os
import gradio as gr
from transformers import pipeline, DetrForObjectDetection, DetrConfig, DetrImageProcessor
import numpy as np
import cv2
from PIL import Image
def load_model(model_name, threshold):
config = DetrConfig.from_pretrained(model_name, threshold=threshold)
model = DetrForObjectDetection.from_pretrained(model_name, config=config)
image_processor = DetrImageProcessor.from_pretrained(model_name)
return pipeline(task='object-detection', model=model, image_processor=image_processor)
# Load the initial model with default threshold
od_pipe = load_model("facebook/detr-resnet-101", 0.25) # Setting a default threshold
def draw_detections(image, detections):
np_image = np.array(image)
np_image = cv2.cvtColor(np_image, cv2.COLOR_RGB2BGR)
for detection in detections:
score = detection['score']
label = detection['label']
box = detection['box']
x_min, y_min = box['xmin'], box['ymin']
x_max, y_max = box['xmax'], box['ymax']
cv2.rectangle(np_image, (x_min, y_min), (x_max, y_max), (0, 255, 0), 2)
label_text = f'{label} {score:.2f}'
cv2.putText(np_image, label_text, (x_min, y_min - 10), cv2.FONT_HERSHEY_SIMPLEX, 1.5, (255, 255, 255), 4)
final_image = cv2.cvtColor(np_image, cv2.COLOR_BGR2RGB)
final_pil_image = Image.fromarray(final_image)
return final_pil_image
def get_pipeline_prediction(model_name, threshold, pil_image):
global od_pipe
od_pipe = load_model(model_name, threshold) # Reload model with the specified model and threshold
try:
if not isinstance(pil_image, Image.Image):
pil_image = Image.fromarray(np.array(pil_image).astype('uint8'), 'RGB')
result = od_pipe(pil_image)
processed_image = draw_detections(pil_image, result)
description = f'Model used: {model_name}, Detection Threshold: {threshold}'
return processed_image, result, description
except Exception as e:
return pil_image, {"error": str(e)}, "Failed to process image"
with gr.Blocks() as demo:
with gr.Row():
with gr.Column():
gr.Markdown("## Object Detection")
inp_image = gr.Image(label="Upload your image here")
model_dropdown = gr.Dropdown(choices=["facebook/detr-resnet-50", "facebook/detr-resnet-50-panoptic", "facebook/detr-resnet-101", "facebook/detr-resnet-101-panoptic"], value="facebook/detr-resnet-101", label="Select Model")
threshold_slider = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, value=0.25, label="Detection Threshold")
run_button = gr.Button("Detect Objects")
with gr.Column():
with gr.Tab("Annotated Image"):
output_image = gr.Image()
with gr.Tab("Detection Results"):
output_data = gr.JSON()
with gr.Tab("Description"):
description_output = gr.Textbox()
run_button.click(get_pipeline_prediction, inputs=[model_dropdown, threshold_slider, inp_image], outputs=[output_image, output_data, description_output])
demo.launch()