Gabolozano commited on
Commit
246f207
1 Parent(s): d4c3acc

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +7 -5
app.py CHANGED
@@ -1,7 +1,6 @@
1
  import os
2
  import gradio as gr
3
- from transformers import pipeline
4
- from transformers import DetrForObjectDetection, DetrConfig
5
 
6
  # Initialize the configuration for DetrForObjectDetection
7
  config = DetrConfig.from_pretrained("facebook/detr-resnet-50")
@@ -9,8 +8,11 @@ config = DetrConfig.from_pretrained("facebook/detr-resnet-50")
9
  # Create the model for object detection using the specified configuration
10
  model = DetrForObjectDetection.from_pretrained("facebook/detr-resnet-50", config=config)
11
 
12
- # Initialize the object detection pipeline
13
- od_pipe = pipeline(task='object-detection', model=model)
 
 
 
14
 
15
  def get_pipeline_prediction(pil_image):
16
  # Run the object detection pipeline on the input image
@@ -18,7 +20,7 @@ def get_pipeline_prediction(pil_image):
18
 
19
  # You might need to implement or adjust the rendering function based on the `pipeline_output`
20
  # The `render_results_in_image` function is assumed here to draw bounding boxes and labels on the input image,
21
- # but you'll need to define it according to your specific needs.
22
  # For now, the output is directly returned since the question doesn't define `render_results_in_image`.
23
  return pipeline_output
24
 
 
1
  import os
2
  import gradio as gr
3
+ from transformers import pipeline, DetrForObjectDetection, DetrConfig, DetrImageProcessor
 
4
 
5
  # Initialize the configuration for DetrForObjectDetection
6
  config = DetrConfig.from_pretrained("facebook/detr-resnet-50")
 
8
  # Create the model for object detection using the specified configuration
9
  model = DetrForObjectDetection.from_pretrained("facebook/detr-resnet-50", config=config)
10
 
11
+ # Initialize the image processor for DETR
12
+ image_processor = DetrImageProcessor.from_pretrained("facebook/detr-resnet-50")
13
+
14
+ # Initialize the object detection pipeline with the model and image processor
15
+ od_pipe = pipeline(task='object-detection', model=model, image_processor=image_processor)
16
 
17
  def get_pipeline_prediction(pil_image):
18
  # Run the object detection pipeline on the input image
 
20
 
21
  # You might need to implement or adjust the rendering function based on the `pipeline_output`
22
  # The `render_results_in_image` function is assumed here to draw bounding boxes and labels on the input image,
23
+ # but you'll need to define it according to your specific needs.
24
  # For now, the output is directly returned since the question doesn't define `render_results_in_image`.
25
  return pipeline_output
26