Spaces:
Sleeping
Sleeping
Gabolozano
commited on
Commit
•
8a42819
1
Parent(s):
baa648a
Update app.py
Browse files
app.py
CHANGED
@@ -4,51 +4,34 @@ from transformers import pipeline, DetrForObjectDetection, DetrConfig, DetrImage
|
|
4 |
import numpy as np
|
5 |
import cv2
|
6 |
from PIL import Image
|
7 |
-
import warnings
|
8 |
-
import logging
|
9 |
-
# To suppress all warnings entries
|
10 |
-
warnings.filterwarnings('ignore')
|
11 |
-
|
12 |
-
# To ignore specific loggings from the Transformers library
|
13 |
-
logging.getLogger("transformers").setLevel(logging.ERROR)
|
14 |
-
|
15 |
-
def model_is_panoptic(model_name):
|
16 |
-
return "panoptic" in model_name
|
17 |
|
18 |
def load_model(model_name, threshold):
|
19 |
config = DetrConfig.from_pretrained(model_name, threshold=threshold)
|
20 |
model = DetrForObjectDetection.from_pretrained(model_name, config=config)
|
21 |
image_processor = DetrImageProcessor.from_pretrained(model_name)
|
22 |
return pipeline(task='object-detection', model=model, image_processor=image_processor)
|
23 |
-
|
24 |
-
od_pipe = load_model("facebook/detr-resnet-101", 0.25)
|
25 |
|
26 |
def draw_detections(image, detections, model_name):
|
27 |
np_image = np.array(image)
|
28 |
np_image = cv2.cvtColor(np_image, cv2.COLOR_RGB2BGR)
|
29 |
for detection in detections:
|
30 |
-
if
|
31 |
-
#
|
32 |
mask = detection['mask']
|
33 |
color = np.random.randint(0, 255, size=3)
|
34 |
mask = np.round(mask * 255).astype(np.uint8)
|
35 |
mask = cv2.resize(mask, (image.width, image.height))
|
36 |
mask_image = np.stack([mask]*3, axis=-1)
|
37 |
np_image[mask == 255] = np_image[mask == 255] * 0.5 + color * 0.5
|
38 |
-
|
39 |
-
#
|
40 |
-
score = detection['score']
|
41 |
-
label = detection['label']
|
42 |
box = detection['box']
|
43 |
-
x_min, y_min = box['xmin'], box['ymin']
|
44 |
-
x_max, y_max = box['xmax'], box['ymax']
|
45 |
cv2.rectangle(np_image, (x_min, y_min), (x_max, y_max), (0, 255, 0), 2)
|
46 |
-
label_text = f'{label} {score:.2f}'
|
47 |
-
cv2.putText(np_image, label_text, (x_min, y_min - 10), cv2.FONT_HERSHEY_SIMPLEX, 1.5, (255, 255, 255), 4)
|
48 |
final_image = cv2.cvtColor(np_image, cv2.COLOR_BGR2RGB)
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
def get_pipeline_prediction(model_name, threshold, pil_image):
|
53 |
global od_pipe
|
54 |
od_pipe = load_model(model_name, threshold)
|
@@ -56,6 +39,7 @@ def get_pipeline_prediction(model_name, threshold, pil_image):
|
|
56 |
if not isinstance(pil_image, Image.Image):
|
57 |
pil_image = Image.fromarray(np.array(pil_image).astype('uint8'), 'RGB')
|
58 |
result = od_pipe(pil_image)
|
|
|
59 |
processed_image = draw_detections(pil_image, result, model_name)
|
60 |
description = f'Model used: {model_name}, Detection Threshold: {threshold}'
|
61 |
return processed_image, result, description
|
@@ -77,5 +61,4 @@ with gr.Blocks() as demo:
|
|
77 |
with gr.Tab("Description"):
|
78 |
description_output = gr.Textbox()
|
79 |
run_button.click(get_pipeline_prediction, inputs=[model_dropdown, threshold_slider, inp_image], outputs=[output_image, output_data, description_output])
|
80 |
-
|
81 |
demo.launch()
|
|
|
4 |
import numpy as np
|
5 |
import cv2
|
6 |
from PIL import Image
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
def load_model(model_name, threshold):
|
9 |
config = DetrConfig.from_pretrained(model_name, threshold=threshold)
|
10 |
model = DetrForObjectDetection.from_pretrained(model_name, config=config)
|
11 |
image_processor = DetrImageProcessor.from_pretrained(model_name)
|
12 |
return pipeline(task='object-detection', model=model, image_processor=image_processor)
|
13 |
+
od_pipe = load_model("facebook/detr-resnet-101", 0.25) # Default model
|
|
|
14 |
|
15 |
def draw_detections(image, detections, model_name):
|
16 |
np_image = np.array(image)
|
17 |
np_image = cv2.cvtColor(np_image, cv2.COLOR_RGB2BGR)
|
18 |
for detection in detections:
|
19 |
+
if 'mask' in detection:
|
20 |
+
# Interpret and visualize segmentation mask
|
21 |
mask = detection['mask']
|
22 |
color = np.random.randint(0, 255, size=3)
|
23 |
mask = np.round(mask * 255).astype(np.uint8)
|
24 |
mask = cv2.resize(mask, (image.width, image.height))
|
25 |
mask_image = np.stack([mask]*3, axis=-1)
|
26 |
np_image[mask == 255] = np_image[mask == 255] * 0.5 + color * 0.5
|
27 |
+
if 'box' in detection:
|
28 |
+
# Visualize bounding box
|
|
|
|
|
29 |
box = detection['box']
|
30 |
+
x_min, y_min, x_max, y_max = [int(b) for b in [box['xmin'], box['ymin'], box['xmax'], box['ymax']]]
|
|
|
31 |
cv2.rectangle(np_image, (x_min, y_min), (x_max, y_max), (0, 255, 0), 2)
|
|
|
|
|
32 |
final_image = cv2.cvtColor(np_image, cv2.COLOR_BGR2RGB)
|
33 |
+
return Image.fromarray(final_image)
|
34 |
+
|
|
|
35 |
def get_pipeline_prediction(model_name, threshold, pil_image):
|
36 |
global od_pipe
|
37 |
od_pipe = load_model(model_name, threshold)
|
|
|
39 |
if not isinstance(pil_image, Image.Image):
|
40 |
pil_image = Image.fromarray(np.array(pil_image).astype('uint8'), 'RGB')
|
41 |
result = od_pipe(pil_image)
|
42 |
+
print("Detection Output:", result) # Debug: Check the output structure
|
43 |
processed_image = draw_detections(pil_image, result, model_name)
|
44 |
description = f'Model used: {model_name}, Detection Threshold: {threshold}'
|
45 |
return processed_image, result, description
|
|
|
61 |
with gr.Tab("Description"):
|
62 |
description_output = gr.Textbox()
|
63 |
run_button.click(get_pipeline_prediction, inputs=[model_dropdown, threshold_slider, inp_image], outputs=[output_image, output_data, description_output])
|
|
|
64 |
demo.launch()
|