Spaces:
Running
Running
Gabolozano
commited on
Commit
•
b6fa5d6
1
Parent(s):
648d371
Update app.py
Browse files
app.py
CHANGED
@@ -21,7 +21,6 @@ def draw_detections(image, detections):
|
|
21 |
np_image = cv2.cvtColor(np_image, cv2.COLOR_RGB2BGR)
|
22 |
|
23 |
for detection in detections:
|
24 |
-
# Extract scores, labels, and bounding boxes correctly
|
25 |
score = detection['score']
|
26 |
label = detection['label']
|
27 |
box = detection['box']
|
@@ -30,40 +29,38 @@ def draw_detections(image, detections):
|
|
30 |
x_max = box['xmax']
|
31 |
y_max = box['ymax']
|
32 |
|
33 |
-
# Draw rectangles and
|
34 |
cv2.rectangle(np_image, (x_min, y_min), (x_max, y_max), (0, 255, 0), 2)
|
35 |
-
|
36 |
-
|
|
|
|
|
|
|
37 |
|
38 |
# Convert BGR to RGB for displaying
|
39 |
final_image = cv2.cvtColor(np_image, cv2.COLOR_BGR2RGB)
|
40 |
-
# Convert the numpy array to PIL Image
|
41 |
final_pil_image = Image.fromarray(final_image)
|
42 |
return final_pil_image
|
43 |
|
44 |
def get_pipeline_prediction(pil_image):
|
45 |
try:
|
46 |
-
# Run the object detection pipeline
|
47 |
pipeline_output = od_pipe(pil_image)
|
48 |
-
|
49 |
-
# Draw the detection results on the image
|
50 |
processed_image = draw_detections(pil_image, pipeline_output)
|
51 |
-
|
52 |
-
# Provide both the image and the JSON detection results
|
53 |
return processed_image, pipeline_output
|
54 |
except Exception as e:
|
55 |
-
# Log the error
|
56 |
print(f"An error occurred: {str(e)}")
|
57 |
-
# Return a message and an empty JSON
|
58 |
return pil_image, {"error": str(e)}
|
59 |
|
|
|
60 |
demo = gr.Interface(
|
61 |
fn=get_pipeline_prediction,
|
62 |
-
inputs=gr.Image(label="Input image", type="pil"),
|
63 |
outputs=[
|
64 |
-
gr.Image(label="Annotated Image"),
|
65 |
-
gr.JSON(label="Detected Objects")
|
66 |
-
]
|
|
|
|
|
67 |
)
|
68 |
|
69 |
demo.launch()
|
|
|
21 |
np_image = cv2.cvtColor(np_image, cv2.COLOR_RGB2BGR)
|
22 |
|
23 |
for detection in detections:
|
|
|
24 |
score = detection['score']
|
25 |
label = detection['label']
|
26 |
box = detection['box']
|
|
|
29 |
x_max = box['xmax']
|
30 |
y_max = box['ymax']
|
31 |
|
32 |
+
# Draw rectangles and label with a larger font size
|
33 |
cv2.rectangle(np_image, (x_min, y_min), (x_max, y_max), (0, 255, 0), 2)
|
34 |
+
label_text = f'{label} {score:.2f}'
|
35 |
+
label_size = cv2.getTextSize(label_text, cv2.FONT_HERSHEY_SIMPLEX, 0.8, 2)[0]
|
36 |
+
label_x = x_min
|
37 |
+
label_y = y_min - label_size[1] if y_min - label_size[1] > 10 else y_min + label_size[1]
|
38 |
+
cv2.putText(np_image, label_text, (label_x, label_y), cv2.FONT_HERSHEY_SIMPLEX, 0.8, (255, 255, 255), 2)
|
39 |
|
40 |
# Convert BGR to RGB for displaying
|
41 |
final_image = cv2.cvtColor(np_image, cv2.COLOR_BGR2RGB)
|
|
|
42 |
final_pil_image = Image.fromarray(final_image)
|
43 |
return final_pil_image
|
44 |
|
45 |
def get_pipeline_prediction(pil_image):
|
46 |
try:
|
|
|
47 |
pipeline_output = od_pipe(pil_image)
|
|
|
|
|
48 |
processed_image = draw_detections(pil_image, pipeline_output)
|
|
|
|
|
49 |
return processed_image, pipeline_output
|
50 |
except Exception as e:
|
|
|
51 |
print(f"An error occurred: {str(e)}")
|
|
|
52 |
return pil_image, {"error": str(e)}
|
53 |
|
54 |
+
# Setting up Gradio interface with tabs for the outputs
|
55 |
demo = gr.Interface(
|
56 |
fn=get_pipeline_prediction,
|
57 |
+
inputs=gr.inputs.Image(label="Input image", type="pil"),
|
58 |
outputs=[
|
59 |
+
gr.outputs.Image(type="pil", label="Annotated Image"),
|
60 |
+
gr.outputs.JSON(label="Detected Objects")
|
61 |
+
],
|
62 |
+
outputs_per_tab =[['image'], ['json']],
|
63 |
+
tabs=["Annotated Image", "Detection Results"]
|
64 |
)
|
65 |
|
66 |
demo.launch()
|