Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -15,7 +15,7 @@ def draw_detections(image, detections):
|
|
15 |
for detection in detections:
|
16 |
# Extract scores, labels, and bounding boxes properly
|
17 |
score = detection['score']
|
18 |
-
label = detection['
|
19 |
box = detection['boxes'] # Make sure 'boxes' data structure matches expected in terms of naming and indexing
|
20 |
x_min, y_min, x_max, y_max = map(int, [box[0], box[1], box[2], box[3]])
|
21 |
|
@@ -35,40 +35,41 @@ model = DetrForObjectDetection.from_pretrained("facebook/detr-resnet-50", config
|
|
35 |
image_processor = DetrImageProcessor.from_pretrained("facebook/detr-resnet-50")
|
36 |
od_pipe = pipeline(task='object-detection', model=model, image_processor=image_processor)
|
37 |
|
38 |
-
|
39 |
-
|
40 |
# Run the object detection pipeline
|
41 |
-
|
42 |
|
43 |
# Draw the detection results on the image
|
44 |
-
|
45 |
|
46 |
# Provide both the image and the JSON detection results
|
47 |
-
|
48 |
-
|
49 |
# Log the error
|
50 |
-
|
51 |
# Return a message and an empty JSON
|
52 |
-
|
53 |
-
|
54 |
-
|
|
|
55 |
# Run the object detection pipeline
|
56 |
-
pipeline_output = od_pipe(pil_image)
|
57 |
|
58 |
# Debugging: print the keys in the output dictionary
|
59 |
-
if pipeline_output:
|
60 |
-
print("Keys available in the detection output:", pipeline_output[0].keys())
|
61 |
|
62 |
# Draw the detection results on the image
|
63 |
-
processed_image = draw_detections(pil_image, pipeline_output)
|
64 |
|
65 |
# Provide both the image and the JSON detection results
|
66 |
-
return processed_image, pipeline_output
|
67 |
-
except Exception as e:
|
68 |
# Log the error
|
69 |
-
print(f"An error occurred: {str(e)}")
|
70 |
# Return a message and an empty JSON
|
71 |
-
return pil_image, {"error": str(e)}
|
72 |
|
73 |
demo = gr.Interface(
|
74 |
fn=get_pipeline_prediction,
|
|
|
15 |
for detection in detections:
|
16 |
# Extract scores, labels, and bounding boxes properly
|
17 |
score = detection['score']
|
18 |
+
label = detection['label']
|
19 |
box = detection['boxes'] # Make sure 'boxes' data structure matches expected in terms of naming and indexing
|
20 |
x_min, y_min, x_max, y_max = map(int, [box[0], box[1], box[2], box[3]])
|
21 |
|
|
|
35 |
image_processor = DetrImageProcessor.from_pretrained("facebook/detr-resnet-50")
|
36 |
od_pipe = pipeline(task='object-detection', model=model, image_processor=image_processor)
|
37 |
|
38 |
+
def get_pipeline_prediction(pil_image):
|
39 |
+
try:
|
40 |
# Run the object detection pipeline
|
41 |
+
pipeline_output = od_pipe(pil_image)
|
42 |
|
43 |
# Draw the detection results on the image
|
44 |
+
processed_image = draw_detections(pil_image, pipeline_output)
|
45 |
|
46 |
# Provide both the image and the JSON detection results
|
47 |
+
return processed_image, pipeline_output
|
48 |
+
except Exception as e:
|
49 |
# Log the error
|
50 |
+
print(f"An error occurred: {str(e)}")
|
51 |
# Return a message and an empty JSON
|
52 |
+
return pil_image, {"error": str(e)}
|
53 |
+
|
54 |
+
##def get_pipeline_prediction(pil_image):
|
55 |
+
## try:
|
56 |
# Run the object detection pipeline
|
57 |
+
## pipeline_output = od_pipe(pil_image)
|
58 |
|
59 |
# Debugging: print the keys in the output dictionary
|
60 |
+
## if pipeline_output:
|
61 |
+
## print("Keys available in the detection output:", pipeline_output[0].keys())
|
62 |
|
63 |
# Draw the detection results on the image
|
64 |
+
## processed_image = draw_detections(pil_image, pipeline_output)
|
65 |
|
66 |
# Provide both the image and the JSON detection results
|
67 |
+
## return processed_image, pipeline_output
|
68 |
+
## except Exception as e:
|
69 |
# Log the error
|
70 |
+
#3 print(f"An error occurred: {str(e)}")
|
71 |
# Return a message and an empty JSON
|
72 |
+
## return pil_image, {"error": str(e)}
|
73 |
|
74 |
demo = gr.Interface(
|
75 |
fn=get_pipeline_prediction,
|