Gabolozano commited on
Commit
e14364d
·
verified ·
1 Parent(s): a0333be

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +10 -21
app.py CHANGED
@@ -1,4 +1,3 @@
1
-
2
  import os
3
  import gradio as gr
4
  from transformers import pipeline, DetrForObjectDetection, DetrConfig, DetrImageProcessor
@@ -35,25 +34,6 @@ model = DetrForObjectDetection.from_pretrained("facebook/detr-resnet-50", config
35
  image_processor = DetrImageProcessor.from_pretrained("facebook/detr-resnet-50")
36
  od_pipe = pipeline(task='object-detection', model=model, image_processor=image_processor)
37
 
38
- def get_pipeline_prediction(pil_image):
39
- # Run the object detection pipeline
40
- pipeline_output = od_pipe(pil_image)
41
-
42
- # Draw the detection results on the image
43
- processed_image = draw_detections(pil_image, pipeline_output)
44
-
45
- # Provide both the image and the JSON detection results
46
- return processed_image, pipeline_output
47
-
48
- demo = gr.Interface(
49
- fn=get_pipeline_prediction,
50
- inputs=gr.Image(label="Input image", type="pil"),
51
- outputs=[
52
- gr.Image(label="Annotated Image"),
53
- gr.JSON(label="Detected Objects")
54
- ]
55
- )
56
-
57
  def get_pipeline_prediction(pil_image):
58
  try:
59
  # Run the object detection pipeline
@@ -69,5 +49,14 @@ def get_pipeline_prediction(pil_image):
69
  print(f"An error occurred: {str(e)}")
70
  # Return a message and an empty JSON
71
  return pil_image, {"error": str(e)}
72
-
 
 
 
 
 
 
 
 
 
73
  demo.launch()
 
 
1
  import os
2
  import gradio as gr
3
  from transformers import pipeline, DetrForObjectDetection, DetrConfig, DetrImageProcessor
 
34
  image_processor = DetrImageProcessor.from_pretrained("facebook/detr-resnet-50")
35
  od_pipe = pipeline(task='object-detection', model=model, image_processor=image_processor)
36
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37
  def get_pipeline_prediction(pil_image):
38
  try:
39
  # Run the object detection pipeline
 
49
  print(f"An error occurred: {str(e)}")
50
  # Return a message and an empty JSON
51
  return pil_image, {"error": str(e)}
52
+
53
+ demo = gr.Interface(
54
+ fn=get_pipeline_prediction,
55
+ inputs=gr.Image(label="Input image", type="pil"),
56
+ outputs=[
57
+ gr.Image(label="Annotated Image"),
58
+ gr.JSON(label="Detected Objects")
59
+ ]
60
+ )
61
+
62
  demo.launch()