import os import gradio as gr from transformers import pipeline, DetrForObjectDetection, DetrConfig, DetrImageProcessor import numpy as np import cv2 from PIL import Image # Initialize the model config = DetrConfig.from_pretrained("facebook/detr-resnet-50") model = DetrForObjectDetection.from_pretrained("facebook/detr-resnet-50", config=config) image_processor = DetrImageProcessor.from_pretrained("facebook/detr-resnet-50") # Initialize the pipeline od_pipe = pipeline(task='object-detection', model=model, image_processor=image_processor) def draw_detections(image, detections): # Convert PIL image to a numpy array np_image = np.array(image) # Convert RGB to BGR for OpenCV np_image = cv2.cvtColor(np_image, cv2.COLOR_RGB2BGR) for detection in detections: score = detection['score'] label = detection['label'] box = detection['box'] x_min = box['xmin'] y_min = box['ymin'] x_max = box['xmax'] y_max = box['ymax'] # Draw rectangles and label with a larger font size cv2.rectangle(np_image, (x_min, y_min), (x_max, y_max), (0, 255, 0), 2) label_text = f'{label} {score:.2f}' label_size = cv2.getTextSize(label_text, cv2.FONT_HERSHEY_SIMPLEX, 0.8, 2)[0] label_x = x_min label_y = y_min - label_size[1] if y_min - label_size[1] > 10 else y_min + label_size[1] cv2.putText(np_image, label_text, (label_x, label_y), cv2.FONT_HERSHEY_SIMPLEX, 0.8, (255, 255, 255), 2) # Convert BGR to RGB for displaying final_image = cv2.cvtColor(np_image, cv2.COLOR_BGR2RGB) final_pil_image = Image.fromarray(final_image) return final_pil_image def get_pipeline_prediction(pil_image): try: pipeline_output = od_pipe(pil_image) processed_image = draw_detections(pil_image, pipeline_output) return processed_image, pipeline_output except Exception as e: print(f"An error occurred: {str(e)}") return pil_image, {"error": str(e)} # Setting up Gradio interface with tabs for the outputs demo = gr.Interface( fn=get_pipeline_prediction, inputs=gr.inputs.Image(label="Input image", type="pil"), outputs=[ gr.outputs.Image(type="pil", label="Annotated Image"), gr.outputs.JSON(label="Detected Objects") ], outputs_per_tab =[['image'], ['json']], tabs=["Annotated Image", "Detection Results"] ) demo.launch()