Spaces:
Runtime error
Runtime error
File size: 7,842 Bytes
69c1e4c f449d52 1d7f828 f944b69 fa9a17e b4f813e 69c1e4c 8e1af49 c35169a f944b69 c88e4f0 f944b69 c35169a f944b69 f449d52 f944b69 f449d52 f944b69 1d7f828 c35169a 1d7f828 f944b69 1d7f828 c35169a f944b69 c35169a f99e432 c35169a f944b69 c35169a 1d7f828 f944b69 d411c20 44c0ccc 41ab34c 44c0ccc 41ab34c 44c0ccc 1d7f828 f944b69 1d7f828 f944b69 1d7f828 3466849 fb28329 3466849 1d7f828 f944b69 1d7f828 f944b69 fe1889a f944b69 3466849 f944b69 1d7f828 f944b69 795fbf0 e93f995 f944b69 c35169a f944b69 1d7f828 f944b69 7b0a7b8 c35169a 1d7f828 f944b69 1d7f828 6c6110f c35169a 1d7f828 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 |
import gradio as gr
from transformers import pipeline
import pandas as pd
import json
import nltk
from sentence_transformers import SentenceTransformer, util
import numpy as np
from LexRank import *
from text import *
nltk.download('punkt')
def lex_rank(in_text, threshold=None , ex_sent=4 ,model_in = 'KBLab/sentence-bert-swedish-cased', language='swedish' ):
if threshold == 'None':
threshold=None
model = SentenceTransformer(model_in)
#Split the document into sentences
sentences = nltk.sent_tokenize(in_text, language=language)
#Compute the sentence embeddings
embeddings = model.encode(sentences, convert_to_tensor=True)
cos_scores = util.cos_sim(embeddings, embeddings).cpu().numpy()
#Compute the centrality for each sentence
centrality_scores = degree_centrality_scores(cos_scores, threshold=threshold)
most_central_sentence_indices = np.argsort(-centrality_scores)
sent_list= []
for idx in most_central_sentence_indices[0:ex_sent]:
sent_list.append(sentences[idx])
return ' '.join(sent_list)
def generate(in_text, num_beams, min_len, max_len, model_in):
print(in_text)
pipe = pipeline("summarization", model=model_in)
answer = pipe(in_text, num_beams=num_beams ,min_length=min_len, max_length=max_len)
print(answer)
return answer[0]["summary_text"]
def update_history(df, in_text, gen_text ,model_in, sum_typ, parameters):
# get rid of first seed phrase
new_row = [{"In_text": in_text,
"Gen_text": gen_text,
"Sum_type": sum_typ ,
"Gen_model": model_in,
"Parameters": json.dumps(parameters)}]
return pd.concat([df, pd.DataFrame(new_row)])
def generate_transformer(in_text, num_beams, min_len, max_len, model_in, history):
gen_text= generate(in_text,num_beams, min_len, max_len, model_in)
return gen_text, update_history(history, in_text, gen_text, "Abstractive" ,model_in, {"num_beams": num_beams,
"min_len": min_len,
"max_len": max_len})
def generate_lexrank(in_text, threshold, model_in, ex_sent ,language, history):
gen_text= lex_rank(in_text, threshold, ex_sent ,model_in, language)
return gen_text, update_history(history, in_text, gen_text, "Extractive" ,model_in, {"threshold": threshold,
"Nr_sent": ex_sent,
"language": language})
with gr.Blocks() as demo:
gr.Markdown("<h1><center> Swedish Summarization Engine! </center></h1>")
with gr.Accordion("Read here for details about the app", open=False):
with gr.Row():
with gr.Column(css=".gr-prose img {margin-bottom: 0em !important;}"):
gr.Markdown(sum_app_text_tab_1)
with gr.Column(css=".gr-prose img {margin-bottom: 0em !important;}"):
gr.Markdown(sum_app_text_tab_2)
with gr.Tabs():
with gr.TabItem("Abstractive Generation for Summarization"):
gr.Markdown(
"""The default parameters for this transformer based model work well to generate summarization.
Use this tab to experiment summarization task of text for different types Abstractive models.""")
with gr.Row():
with gr.Column(scale=4):
text_baseline_transformer= gr.TextArea(label="Input text to summarize", placeholder="Input summarization")
with gr.Row():
transformer_button_clear = gr.Button("Clear", variant='secondary')
transformer_button = gr.Button("Summarize!", variant='primary')
with gr.Column(scale=3):
with gr.Row():
num_beams = gr.Slider(minimum=2, maximum=10, value=2, step=1, label="Number of Beams")
min_len = gr.Slider(minimum=10, maximum=50, value=25, step=5, label="Min length")
max_len = gr.Slider(minimum=50, maximum=130, value=120, step=10, label="Max length")
model_in = gr.Dropdown(["Gabriel/bart-base-cnn-swe", "Gabriel/bart-base-cnn-xsum-swe", "Gabriel/bart-base-cnn-xsum-wiki-swe"], value="Gabriel/bart-base-cnn-xsum-swe", label="Model")
output_basline_transformer = gr.Textbox(label="Output Text")
with gr.Row():
with gr.Accordion("Here are some examples you can use:", open=False):
gr.Markdown("<h3>Press one of the test examples below.<h3>")
gr.Markdown("NOTE: First time inference for a new model will take time, since a new model has to downloaded before inference.")
gr.Examples([[abstractive_example_text_1
, 5,25,120, "Gabriel/bart-base-cnn-swe"],
[abstractive_example_text_2
, 5,25,120, "Gabriel/bart-base-cnn-xsum-swe"]
], [text_baseline_transformer, num_beams, min_len, max_len, model_in])
with gr.TabItem("Extractive Ranking Graph for Summarization"):
gr.Markdown(
"""Use this tab to experiment summarization task of text with a graph based method (LexRank).""")
with gr.Row():
with gr.Column(scale=4):
text_extract= gr.TextArea(label="Input text to summarize", placeholder="Input text")
with gr.Row():
extract_button_clear = gr.Button("Clear", variant='secondary')
extract_button = gr.Button("Summarize!", variant='primary')
with gr.Column(scale=3):
with gr.Row():
ex_sent =gr.Slider(minimum=1, maximum=7, value=4, step=1, label="Sentences to return")
ex_threshold = gr.Dropdown(['None',0.1,0.2,0.3,0.4,0.5], value='None', label="Similar Threshold")
ex_language = gr.Dropdown(["swedish","english"], value="swedish", label="Language")
model_in_ex = gr.Dropdown(["KBLab/sentence-bert-swedish-cased","sentence-transformers/all-MiniLM-L6-v2"], value="KBLab/sentence-bert-swedish-cased", label="Model")
output_extract = gr.Textbox(label="Output Text")
with gr.Row():
with gr.Accordion("Here are some examples you can use:", open=False):
gr.Markdown("<h3>Press one of the test examples below.<h3>")
gr.Markdown("NOTE: First time inference for a new model will take time, since a new model has to downloaded before inference.")
gr.Examples([[extractive_example_text_1
, 'None', 4,'swedish', "KBLab/sentence-bert-swedish-cased"]], [text_extract, ex_threshold, ex_sent ,ex_language, model_in_ex])
with gr.Box():
gr.Markdown("<h3> Generation History <h3>")
# Displays a dataframe with the history of moves generated, with parameters
history = gr.Dataframe(headers=["In_text", "Gen_text","Sum_type" ,"Gen_model", "Parameters"], overflow_row_behaviour="show_ends", wrap=True)
transformer_button.click(generate_transformer, inputs=[text_baseline_transformer, num_beams, min_len, max_len, model_in ,history], outputs=[output_basline_transformer , history], api_name="summarize" )
extract_button.click(generate_lexrank, inputs=[text_extract, ex_threshold, model_in_ex, ex_sent ,ex_language ,history], outputs=[output_extract , history] )
demo.launch() |