Spaces:
Running
Running
from transformers import Trainer, TrainingArguments, DataCollatorForLanguageModeling | |
from datasets import Dataset | |
def preprocess_data(df, tokenizer): | |
df["text"] = df.apply(lambda row: f"Question: {row['Question']} Answer: {row['Answer']}", axis=1) | |
dataset = Dataset.from_pandas(df) | |
dataset = dataset.map(lambda x: tokenizer(x["text"], truncation=True, padding="max_length", max_length=512), batched=True) | |
return dataset | |
def train_model(model, tokenizer, dataset, output_dir): | |
training_args = TrainingArguments( | |
output_dir=output_dir, | |
per_device_train_batch_size=4, | |
num_train_epochs=1, | |
logging_dir="./logs", | |
save_steps=10, | |
logging_steps=10 | |
) | |
data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False) | |
trainer = Trainer( | |
model=model, | |
args=training_args, | |
train_dataset=dataset, | |
data_collator=data_collator | |
) | |
trainer.train() | |
model.save_pretrained(output_dir) | |
tokenizer.save_pretrained(output_dir) | |