Spaces:
Running
Running
GabrielSalem
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,120 +1,79 @@
|
|
1 |
import os
|
2 |
import json
|
3 |
-
from flask import Flask, render_template, request, jsonify, redirect, url_for
|
4 |
-
from werkzeug.utils import secure_filename
|
5 |
-
from huggingface_hub import InferenceClient
|
6 |
import pandas as pd
|
7 |
-
import
|
8 |
from PyPDF2 import PdfReader
|
|
|
|
|
9 |
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
app.config["UPLOAD_FOLDER"] = UPLOAD_FOLDER
|
15 |
-
ALLOWED_EXTENSIONS = {"txt", "csv", "json", "pdf", "docx"}
|
16 |
-
|
17 |
-
# Retrieve Hugging Face API key securely from environment variables
|
18 |
-
api_key = os.getenv("APIHUGGING")
|
19 |
-
if not api_key:
|
20 |
-
raise ValueError("Hugging Face API key not found. Set 'HF_API_KEY' in your Space secrets.")
|
21 |
|
22 |
# Initialize Hugging Face Inference Client
|
23 |
-
client = InferenceClient(api_key=
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
try:
|
35 |
-
|
36 |
-
|
37 |
-
content = file.read()
|
38 |
-
elif file_type == "csv":
|
39 |
-
df = pd.read_csv(filepath)
|
40 |
-
content = df.to_string()
|
41 |
-
elif file_type == "json":
|
42 |
-
with open(filepath, "r", encoding="utf-8") as file:
|
43 |
-
content = json.dumps(json.load(file), indent=4)
|
44 |
-
elif file_type == "pdf":
|
45 |
-
reader = PdfReader(filepath)
|
46 |
-
content = "".join(page.extract_text() for page in reader.pages)
|
47 |
-
elif file_type == "docx":
|
48 |
-
doc = docx.Document(filepath)
|
49 |
-
content = "\n".join(paragraph.text for paragraph in doc.paragraphs)
|
50 |
-
except Exception as e:
|
51 |
-
raise ValueError(f"Error extracting file content: {e}")
|
52 |
-
return content
|
53 |
|
|
|
|
|
|
|
|
|
54 |
|
55 |
-
#
|
56 |
-
|
57 |
-
try:
|
58 |
-
response = client.text_generation(
|
59 |
-
prompt=prompt,
|
60 |
model="Qwen/Qwen2.5-Coder-32B-Instruct",
|
|
|
61 |
max_tokens=500
|
62 |
)
|
63 |
-
return response
|
64 |
-
except Exception as e:
|
65 |
-
return f"Error in model response: {e}"
|
66 |
-
|
67 |
-
|
68 |
-
# Route: Home Page (File Upload Form)
|
69 |
-
@app.route("/", methods=["GET", "POST"])
|
70 |
-
def upload_file():
|
71 |
-
if request.method == "POST":
|
72 |
-
# Check if file is uploaded
|
73 |
-
if "file" not in request.files:
|
74 |
-
return jsonify({"error": "No file part"}), 400
|
75 |
-
|
76 |
-
file = request.files["file"]
|
77 |
-
|
78 |
-
if file.filename == "":
|
79 |
-
return jsonify({"error": "No selected file"}), 400
|
80 |
-
|
81 |
-
if file and allowed_file(file.filename):
|
82 |
-
filename = secure_filename(file.filename)
|
83 |
-
filepath = os.path.join(app.config["UPLOAD_FOLDER"], filename)
|
84 |
-
os.makedirs(app.config["UPLOAD_FOLDER"], exist_ok=True)
|
85 |
-
file.save(filepath)
|
86 |
-
|
87 |
-
# Extract file content
|
88 |
-
file_type = filename.rsplit(".", 1)[1].lower()
|
89 |
-
try:
|
90 |
-
content = extract_file_content(filepath, file_type)
|
91 |
-
except Exception as e:
|
92 |
-
return jsonify({"error": str(e)}), 500
|
93 |
-
|
94 |
-
# Send content to Hugging Face model
|
95 |
-
response = get_bot_response(content)
|
96 |
-
|
97 |
-
return jsonify({"response": response})
|
98 |
-
|
99 |
-
else:
|
100 |
-
return jsonify({"error": "File type not allowed"}), 400
|
101 |
-
|
102 |
-
return render_template("upload.html")
|
103 |
|
|
|
|
|
|
|
|
|
104 |
|
105 |
-
#
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
prompt = data.get("prompt")
|
110 |
|
111 |
-
|
112 |
-
|
|
|
113 |
|
114 |
-
|
115 |
-
response = get_bot_response(prompt)
|
116 |
-
return jsonify({"response": response})
|
117 |
|
|
|
|
|
118 |
|
|
|
119 |
if __name__ == "__main__":
|
120 |
-
app.
|
|
|
1 |
import os
|
2 |
import json
|
|
|
|
|
|
|
3 |
import pandas as pd
|
4 |
+
from docx import Document
|
5 |
from PyPDF2 import PdfReader
|
6 |
+
from huggingface_hub import InferenceClient
|
7 |
+
import gradio as gr
|
8 |
|
9 |
+
# Retrieve Hugging Face API key from environment variable (secret)
|
10 |
+
API_KEY = os.getenv("APIHUGGING")
|
11 |
+
if not API_KEY:
|
12 |
+
raise ValueError("Hugging Face API key not found. Please set the 'APIHUGGING' secret.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
# Initialize Hugging Face Inference Client
|
15 |
+
client = InferenceClient(api_key=API_KEY)
|
16 |
+
|
17 |
+
# Function to extract text from various file types
|
18 |
+
def extract_file_content(file_path):
|
19 |
+
_, file_extension = os.path.splitext(file_path.name)
|
20 |
+
if file_extension.lower() in [".txt"]:
|
21 |
+
return file_path.read().decode("utf-8")
|
22 |
+
elif file_extension.lower() in [".csv"]:
|
23 |
+
df = pd.read_csv(file_path)
|
24 |
+
return df.to_string(index=False)
|
25 |
+
elif file_extension.lower() in [".json"]:
|
26 |
+
data = json.load(file_path)
|
27 |
+
return json.dumps(data, indent=4)
|
28 |
+
elif file_extension.lower() in [".pdf"]:
|
29 |
+
reader = PdfReader(file_path)
|
30 |
+
text = ""
|
31 |
+
for page in reader.pages:
|
32 |
+
text += page.extract_text()
|
33 |
+
return text
|
34 |
+
elif file_extension.lower() in [".docx"]:
|
35 |
+
doc = Document(file_path)
|
36 |
+
return "\n".join([para.text for para in doc.paragraphs])
|
37 |
+
else:
|
38 |
+
return "Unsupported file type."
|
39 |
+
|
40 |
+
# Function to interact with the Hugging Face model
|
41 |
+
def get_bot_response(file, prompt):
|
42 |
try:
|
43 |
+
# Extract content from the uploaded file
|
44 |
+
file_content = extract_file_content(file)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
|
46 |
+
# Prepare conversation history
|
47 |
+
messages = [
|
48 |
+
{"role": "user", "content": f"{prompt}\n\nFile Content:\n{file_content}"}
|
49 |
+
]
|
50 |
|
51 |
+
# Call Hugging Face API
|
52 |
+
bot_response = client.chat_completions.create(
|
|
|
|
|
|
|
53 |
model="Qwen/Qwen2.5-Coder-32B-Instruct",
|
54 |
+
messages=messages,
|
55 |
max_tokens=500
|
56 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
|
58 |
+
# Collect and return the bot's response
|
59 |
+
return bot_response.choices[0].message.content
|
60 |
+
except Exception as e:
|
61 |
+
return f"Error: {str(e)}"
|
62 |
|
63 |
+
# Gradio Interface
|
64 |
+
with gr.Blocks() as app:
|
65 |
+
gr.Markdown("# π AI File Chat with Hugging Face π")
|
66 |
+
gr.Markdown("Upload any file and ask the AI a question based on the file's content!")
|
|
|
67 |
|
68 |
+
with gr.Row():
|
69 |
+
file_input = gr.File(label="Upload File")
|
70 |
+
prompt_input = gr.Textbox(label="Enter your question", placeholder="Ask something about the uploaded file...")
|
71 |
|
72 |
+
output = gr.Textbox(label="AI Response")
|
|
|
|
|
73 |
|
74 |
+
submit_button = gr.Button("Submit")
|
75 |
+
submit_button.click(get_bot_response, inputs=[file_input, prompt_input], outputs=output)
|
76 |
|
77 |
+
# Launch the Gradio app
|
78 |
if __name__ == "__main__":
|
79 |
+
app.launch()
|