Spaces:
Running
Running
GabrielSalem
commited on
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,152 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from flask import Flask, render_template, request, redirect, url_for, send_file, jsonify
|
2 |
+
from transformers import GPT2LMHeadModel, GPT2Tokenizer
|
3 |
+
import os
|
4 |
+
import torch
|
5 |
+
import zipfile
|
6 |
+
import pandas as pd
|
7 |
+
from utils import preprocess_data, train_model
|
8 |
+
|
9 |
+
app = Flask(__name__)
|
10 |
+
app.config["UPLOAD_FOLDER"] = "uploads"
|
11 |
+
app.config["MODEL_FOLDER"] = "models"
|
12 |
+
|
13 |
+
# Initialize device
|
14 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
15 |
+
|
16 |
+
# Load tokenizer and set padding if needed
|
17 |
+
model_name = "gpt2"
|
18 |
+
tokenizer = GPT2Tokenizer.from_pretrained(model_name)
|
19 |
+
tokenizer.add_special_tokens({'pad_token': '[PAD]'})
|
20 |
+
|
21 |
+
# Cache for loaded models to avoid redundant loading
|
22 |
+
loaded_models = {}
|
23 |
+
|
24 |
+
|
25 |
+
@app.route("/")
|
26 |
+
def home():
|
27 |
+
# List available models
|
28 |
+
models = [model for model in os.listdir(app.config["MODEL_FOLDER"]) if
|
29 |
+
os.path.isdir(os.path.join(app.config["MODEL_FOLDER"], model))]
|
30 |
+
return render_template("home.html", models=models)
|
31 |
+
|
32 |
+
|
33 |
+
@app.route("/upload", methods=["POST"])
|
34 |
+
def upload_file():
|
35 |
+
if "file" not in request.files or "model_name" not in request.form:
|
36 |
+
return redirect(request.url)
|
37 |
+
|
38 |
+
file = request.files["file"]
|
39 |
+
model_name = request.form["model_name"]
|
40 |
+
|
41 |
+
if not file.filename or not model_name:
|
42 |
+
return redirect(request.url)
|
43 |
+
|
44 |
+
# Prepare directories and paths
|
45 |
+
model_path = os.path.join(app.config["MODEL_FOLDER"], model_name)
|
46 |
+
os.makedirs(model_path, exist_ok=True)
|
47 |
+
filepath = os.path.join(app.config["UPLOAD_FOLDER"], file.filename)
|
48 |
+
file.save(filepath)
|
49 |
+
|
50 |
+
# Load and preprocess data
|
51 |
+
try:
|
52 |
+
df = pd.read_csv(filepath)
|
53 |
+
dataset = preprocess_data(df, tokenizer)
|
54 |
+
except Exception as e:
|
55 |
+
return f"Data processing error: {e}", 500
|
56 |
+
|
57 |
+
# Train and save model
|
58 |
+
try:
|
59 |
+
# Clear any previous GPU memory allocation
|
60 |
+
torch.cuda.empty_cache()
|
61 |
+
|
62 |
+
model = GPT2LMHeadModel.from_pretrained("gpt2")
|
63 |
+
model.resize_token_embeddings(len(tokenizer))
|
64 |
+
model.to(device)
|
65 |
+
|
66 |
+
# Train the model
|
67 |
+
train_model(model, tokenizer, dataset, model_path)
|
68 |
+
|
69 |
+
# Clear GPU memory right after training
|
70 |
+
del model
|
71 |
+
torch.cuda.empty_cache()
|
72 |
+
except torch.cuda.OutOfMemoryError:
|
73 |
+
# Clear memory in case of OOM error and return an appropriate message
|
74 |
+
torch.cuda.empty_cache()
|
75 |
+
return "CUDA out of memory error. Try a smaller model or reduce batch size.", 500
|
76 |
+
except Exception as e:
|
77 |
+
return f"Model training error: {e}", 500
|
78 |
+
|
79 |
+
# Zip the model files for download
|
80 |
+
model_zip_path = os.path.join(model_path, f"{model_name}.zip")
|
81 |
+
with zipfile.ZipFile(model_zip_path, 'w') as model_zip:
|
82 |
+
for folder, _, files in os.walk(model_path):
|
83 |
+
for file_name in files:
|
84 |
+
file_path = os.path.join(folder, file_name)
|
85 |
+
model_zip.write(file_path, os.path.relpath(file_path, app.config["MODEL_FOLDER"]))
|
86 |
+
|
87 |
+
return redirect(url_for("home"))
|
88 |
+
|
89 |
+
|
90 |
+
@app.route("/download/<model_name>")
|
91 |
+
def download_model(model_name):
|
92 |
+
model_path = os.path.join(app.config["MODEL_FOLDER"], model_name, f"{model_name}.zip")
|
93 |
+
if os.path.exists(model_path):
|
94 |
+
return send_file(model_path, as_attachment=True)
|
95 |
+
else:
|
96 |
+
return "Model not found", 404
|
97 |
+
|
98 |
+
|
99 |
+
@app.route("/chat/<model_name>")
|
100 |
+
def chat(model_name):
|
101 |
+
return render_template("chat.html", model_name=model_name)
|
102 |
+
|
103 |
+
|
104 |
+
@app.route("/generate/<model_name>", methods=["POST"])
|
105 |
+
def generate_response(model_name):
|
106 |
+
prompt = request.json.get("prompt")
|
107 |
+
if not prompt:
|
108 |
+
return jsonify({"error": "No prompt provided"}), 400
|
109 |
+
|
110 |
+
# Load the model if not already in cache
|
111 |
+
if model_name not in loaded_models:
|
112 |
+
model_path = os.path.join(app.config["MODEL_FOLDER"], model_name)
|
113 |
+
if not os.path.exists(model_path):
|
114 |
+
return jsonify({"error": f"Model '{model_name}' not found"}), 404
|
115 |
+
try:
|
116 |
+
# Clear GPU memory and load the model
|
117 |
+
torch.cuda.empty_cache()
|
118 |
+
model = GPT2LMHeadModel.from_pretrained(model_path)
|
119 |
+
model.to(device)
|
120 |
+
loaded_models[model_name] = model
|
121 |
+
except Exception as e:
|
122 |
+
return jsonify({"error": f"Failed to load model '{model_name}': {str(e)}"}), 500
|
123 |
+
|
124 |
+
# Generate response
|
125 |
+
model = loaded_models[model_name]
|
126 |
+
try:
|
127 |
+
inputs = tokenizer.encode(prompt, return_tensors="pt").to(device)
|
128 |
+
outputs = model.generate(
|
129 |
+
inputs,
|
130 |
+
max_length=50,
|
131 |
+
num_return_sequences=1,
|
132 |
+
no_repeat_ngram_size=2,
|
133 |
+
pad_token_id=tokenizer.eos_token_id
|
134 |
+
)
|
135 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
136 |
+
except torch.cuda.OutOfMemoryError:
|
137 |
+
torch.cuda.empty_cache()
|
138 |
+
return jsonify({"error": "Out of memory. Try a smaller model or shorter prompt."}), 500
|
139 |
+
except Exception as e:
|
140 |
+
return jsonify({"error": str(e)}), 500
|
141 |
+
finally:
|
142 |
+
# Clear GPU memory after generation to avoid leaks
|
143 |
+
torch.cuda.empty_cache()
|
144 |
+
|
145 |
+
return jsonify({"response": response})
|
146 |
+
|
147 |
+
|
148 |
+
if __name__ == "__main__":
|
149 |
+
os.makedirs(app.config["UPLOAD_FOLDER"], exist_ok=True)
|
150 |
+
os.makedirs(app.config["MODEL_FOLDER"], exist_ok=True)
|
151 |
+
app.run(debug=True)
|
152 |
+
|