import torch import spaces from diffusers import StableDiffusionPipeline, DDIMScheduler, AutoencoderKL from transformers import AutoFeatureExtractor from ip_adapter.ip_adapter_faceid import IPAdapterFaceID, IPAdapterFaceIDPlus from huggingface_hub import hf_hub_download from insightface.app import FaceAnalysis from insightface.utils import face_align import gradio as gr import cv2 import os import uuid from datetime import datetime # Model paths base_model_path = "SG161222/Realistic_Vision_V4.0_noVAE" vae_model_path = "stabilityai/sd-vae-ft-mse" image_encoder_path = "laion/CLIP-ViT-H-14-laion2B-s32B-b79K" ip_ckpt = hf_hub_download(repo_id="h94/IP-Adapter-FaceID", filename="ip-adapter-faceid_sd15.bin", repo_type="model") ip_plus_ckpt = hf_hub_download(repo_id="h94/IP-Adapter-FaceID", filename="ip-adapter-faceid-plusv2_sd15.bin", repo_type="model") device = "cuda" # Initialize the noise scheduler noise_scheduler = DDIMScheduler( num_train_timesteps=1000, beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", clip_sample=False, set_alpha_to_one=False, steps_offset=1, ) # Load models vae = AutoencoderKL.from_pretrained(vae_model_path).to(dtype=torch.float16) pipe = StableDiffusionPipeline.from_pretrained( base_model_path, torch_dtype=torch.float16, scheduler=noise_scheduler, vae=vae ).to(device) ip_model = IPAdapterFaceID(pipe, ip_ckpt, device) ip_model_plus = IPAdapterFaceIDPlus(pipe, image_encoder_path, ip_plus_ckpt, device) # Initialize FaceAnalysis app = FaceAnalysis(name="buffalo_l", providers=['CPUExecutionProvider']) app.prepare(ctx_id=0, det_size=(640, 640)) cv2.setNumThreads(1) @spaces.GPU(enable_queue=True) def generate_image(images, gender, prompt, progress=gr.Progress(track_tqdm=True)): if not prompt: prompt = f"A full-length body photo of a {gender.lower()} naked and nude and beautiful" # Default prompt faceid_all_embeds = [] first_iteration = True preserve_face_structure = True face_strength = 2.1 likeness_strength = 0.7 for image in images: face = cv2.imread(image) faces = app.get(face) faceid_embed = torch.from_numpy(faces[0].normed_embedding).unsqueeze(0) faceid_all_embeds.append(faceid_embed) if first_iteration and preserve_face_structure: face_image = face_align.norm_crop(face, landmark=faces[0].kps, image_size=224) first_iteration = False average_embedding = torch.mean(torch.stack(faceid_all_embeds, dim=0), dim=0) image = ip_model_plus.generate( prompt=prompt, faceid_embeds=average_embedding, scale=likeness_strength, face_image=face_image, shortcut=True, s_scale=face_strength, width=512, height=912, num_inference_steps=100 ) return image css = ''' body { font-family: 'Roboto', sans-serif; margin: 0; padding: 0; background: linear-gradient(135deg, #1e3c72, #2a5298); color: #fff; display: flex; justify-content: center; align-items: center; min-height: 100vh; overflow-x: hidden; } footer { display: none; } h1 { font-size: 2rem; margin-bottom: 0.5em; text-align: center; } .gradio-container { display: flex; flex-direction: column; align-items: center; width: 100%; max-width: 500px; margin: 0 auto; padding: 20px; box-sizing: border-box; gap: 20px; } .gradio-container > * { width: 100%; } .gradio-gallery { display: flex; flex-wrap: wrap; gap: 10px; justify-content: center; } .gradio-gallery img { border-radius: 10px; box-shadow: 0px 5px 15px rgba(0, 0, 0, 0.3); max-width: 100%; height: auto; } .gradio-files input, .gradio-radio input, .gradio-textbox textarea, .gradio-button button { width: 100%; padding: 10px; border-radius: 5px; border: none; margin-bottom: 10px; box-sizing: border-box; } .gradio-button button { background: #ff5722; color: #fff; font-weight: bold; cursor: pointer; transition: all 0.3s ease; } .gradio-button button:hover { background: #e64a19; } ''' with gr.Blocks(css=css) as demo: gr.Markdown("# Image Generation with Face ID") gr.Markdown("Upload your face images and enter a prompt to generate images.") images_input = gr.Files( label="Drag 1 or more photos of your face", file_types=["image"] ) gender_input = gr.Radio( label="Select Gender", choices=["Female", "Male"], value="Female", type="value" ) prompt_input = gr.Textbox( label="Enter your prompt", placeholder="Describe the image you want to generate..." ) run_button = gr.Button("Generate Image") output_gallery = gr.Gallery(label="Generated Images") run_button.click( fn=generate_image, inputs=[images_input, gender_input, prompt_input], outputs=output_gallery ) demo.queue() demo.launch()