Spaces:
Paused
Paused
Create app.py
Browse files- .gitignore +1 -0
- .ipynb_checkpoints/app-checkpoint.py +49 -0
- app.py +49 -0
- requirements.txt +89 -0
.gitignore
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
env/
|
.ipynb_checkpoints/app-checkpoint.py
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Gaepago model V1 (CPU Test)
|
2 |
+
|
3 |
+
# import package
|
4 |
+
from transformers import AutoModelForAudioClassification
|
5 |
+
from transformers import AutoFeatureExtractor
|
6 |
+
from transformers import pipeline
|
7 |
+
import gradio as gr
|
8 |
+
import torch
|
9 |
+
|
10 |
+
# Set model & Dataset NM
|
11 |
+
MODEL_NAME = "Gae8J/gaepago-20"
|
12 |
+
DATASET_NAME = "Gae8J/modeling_v1"
|
13 |
+
|
14 |
+
# Import Model & feature extractor
|
15 |
+
model = AutoModelForAudioClassification.from_pretrained(MODEL_NAME)
|
16 |
+
feature_extractor = AutoFeatureExtractor.from_pretrained(MODEL_NAME)
|
17 |
+
|
18 |
+
# ๋ชจ๋ธ cpu๋ก ๋ณ๊ฒฝํ์ฌ ์งํ
|
19 |
+
model.to("cpu")
|
20 |
+
|
21 |
+
# Gaepago Inference Model function
|
22 |
+
def gaepago_fn(tmp_audio_dir):
|
23 |
+
print(tmp_audio_dir)
|
24 |
+
audio_dataset = Dataset.from_dict({"audio": [tmp_audio_dir]}).cast_column("audio", Audio(sampling_rate=16000))
|
25 |
+
inputs = feature_extractor(audio_dataset[0]["audio"]["array"]
|
26 |
+
,sampling_rate=audio_dataset[0]["audio"]["sampling_rate"]
|
27 |
+
,return_tensors="pt")
|
28 |
+
with torch.no_grad():
|
29 |
+
logits = model(**inputs).logits
|
30 |
+
predicted_class_ids = torch.argmax(logits).item()
|
31 |
+
predicted_label = model.config.id2label[predicted_class_ids]
|
32 |
+
|
33 |
+
return predicted_label
|
34 |
+
|
35 |
+
# Main
|
36 |
+
main_api = gr.Blocks()
|
37 |
+
|
38 |
+
with demo:
|
39 |
+
gr.Markdown("## 8J Gaepago Demo(with CPU)")
|
40 |
+
with gr.Row():
|
41 |
+
audio = gr.Audio(source="microphone", type="filepath"
|
42 |
+
,label='๋
น์๋ฒํผ์ ๋๋ฌ ์ด์ฝ๊ฐ ํ๋ ๋ง์ ๋ค๋ ค์ฃผ์ธ์')
|
43 |
+
transcription = gr.Textbox(label='์ง๊ธ ์ด์ฝ๊ฐ ํ๋ ๋ง์...')
|
44 |
+
b1 = gr.Button("๊ฐ์์ง ์ธ์ด ๋ฒ์ญ!")
|
45 |
+
|
46 |
+
b1.click(gaepago_fn, inputs=audio, outputs=transcription)
|
47 |
+
examples = gr.Examples(examples=example_list,
|
48 |
+
inputs=[audio])
|
49 |
+
main_api.launch(share=True)
|
app.py
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Gaepago model V1 (CPU Test)
|
2 |
+
|
3 |
+
# import package
|
4 |
+
from transformers import AutoModelForAudioClassification
|
5 |
+
from transformers import AutoFeatureExtractor
|
6 |
+
from transformers import pipeline
|
7 |
+
import gradio as gr
|
8 |
+
import torch
|
9 |
+
|
10 |
+
# Set model & Dataset NM
|
11 |
+
MODEL_NAME = "Gae8J/gaepago-20"
|
12 |
+
DATASET_NAME = "Gae8J/modeling_v1"
|
13 |
+
|
14 |
+
# Import Model & feature extractor
|
15 |
+
model = AutoModelForAudioClassification.from_pretrained(MODEL_NAME)
|
16 |
+
feature_extractor = AutoFeatureExtractor.from_pretrained(MODEL_NAME)
|
17 |
+
|
18 |
+
# ๋ชจ๋ธ cpu๋ก ๋ณ๊ฒฝํ์ฌ ์งํ
|
19 |
+
model.to("cpu")
|
20 |
+
|
21 |
+
# Gaepago Inference Model function
|
22 |
+
def gaepago_fn(tmp_audio_dir):
|
23 |
+
print(tmp_audio_dir)
|
24 |
+
audio_dataset = Dataset.from_dict({"audio": [tmp_audio_dir]}).cast_column("audio", Audio(sampling_rate=16000))
|
25 |
+
inputs = feature_extractor(audio_dataset[0]["audio"]["array"]
|
26 |
+
,sampling_rate=audio_dataset[0]["audio"]["sampling_rate"]
|
27 |
+
,return_tensors="pt")
|
28 |
+
with torch.no_grad():
|
29 |
+
logits = model(**inputs).logits
|
30 |
+
predicted_class_ids = torch.argmax(logits).item()
|
31 |
+
predicted_label = model.config.id2label[predicted_class_ids]
|
32 |
+
|
33 |
+
return predicted_label
|
34 |
+
|
35 |
+
# Main
|
36 |
+
main_api = gr.Blocks()
|
37 |
+
|
38 |
+
with demo:
|
39 |
+
gr.Markdown("## 8J Gaepago Demo(with CPU)")
|
40 |
+
with gr.Row():
|
41 |
+
audio = gr.Audio(source="microphone", type="filepath"
|
42 |
+
,label='๋
น์๋ฒํผ์ ๋๋ฌ ์ด์ฝ๊ฐ ํ๋ ๋ง์ ๋ค๋ ค์ฃผ์ธ์')
|
43 |
+
transcription = gr.Textbox(label='์ง๊ธ ์ด์ฝ๊ฐ ํ๋ ๋ง์...')
|
44 |
+
b1 = gr.Button("๊ฐ์์ง ์ธ์ด ๋ฒ์ญ!")
|
45 |
+
|
46 |
+
b1.click(gaepago_fn, inputs=audio, outputs=transcription)
|
47 |
+
examples = gr.Examples(examples=example_list,
|
48 |
+
inputs=[audio])
|
49 |
+
main_api.launch(share=True)
|
requirements.txt
ADDED
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
aiofiles==23.1.0
|
2 |
+
aiohttp==3.8.4
|
3 |
+
aiosignal==1.3.1
|
4 |
+
altair==5.0.1
|
5 |
+
anyio==3.7.0
|
6 |
+
async-timeout==4.0.2
|
7 |
+
attrs==23.1.0
|
8 |
+
certifi==2023.5.7
|
9 |
+
charset-normalizer==3.1.0
|
10 |
+
click==8.1.3
|
11 |
+
cmake==3.26.4
|
12 |
+
contourpy==1.1.0
|
13 |
+
cycler==0.11.0
|
14 |
+
exceptiongroup==1.1.1
|
15 |
+
fastapi==0.97.0
|
16 |
+
ffmpy==0.3.0
|
17 |
+
filelock==3.12.2
|
18 |
+
fonttools==4.40.0
|
19 |
+
frozenlist==1.3.3
|
20 |
+
fsspec==2023.6.0
|
21 |
+
gradio==3.35.2
|
22 |
+
gradio_client==0.2.7
|
23 |
+
h11==0.14.0
|
24 |
+
httpcore==0.17.2
|
25 |
+
httpx==0.24.1
|
26 |
+
huggingface-hub==0.15.1
|
27 |
+
idna==3.4
|
28 |
+
importlib-resources==5.12.0
|
29 |
+
Jinja2==3.1.2
|
30 |
+
jsonschema==4.17.3
|
31 |
+
kiwisolver==1.4.4
|
32 |
+
linkify-it-py==2.0.2
|
33 |
+
lit==16.0.6
|
34 |
+
markdown-it-py==2.2.0
|
35 |
+
MarkupSafe==2.1.3
|
36 |
+
matplotlib==3.7.1
|
37 |
+
mdit-py-plugins==0.3.3
|
38 |
+
mdurl==0.1.2
|
39 |
+
mpmath==1.3.0
|
40 |
+
multidict==6.0.4
|
41 |
+
networkx==3.1
|
42 |
+
numpy==1.24.3
|
43 |
+
nvidia-cublas-cu11==11.10.3.66
|
44 |
+
nvidia-cuda-cupti-cu11==11.7.101
|
45 |
+
nvidia-cuda-nvrtc-cu11==11.7.99
|
46 |
+
nvidia-cuda-runtime-cu11==11.7.99
|
47 |
+
nvidia-cudnn-cu11==8.5.0.96
|
48 |
+
nvidia-cufft-cu11==10.9.0.58
|
49 |
+
nvidia-curand-cu11==10.2.10.91
|
50 |
+
nvidia-cusolver-cu11==11.4.0.1
|
51 |
+
nvidia-cusparse-cu11==11.7.4.91
|
52 |
+
nvidia-nccl-cu11==2.14.3
|
53 |
+
nvidia-nvtx-cu11==11.7.91
|
54 |
+
orjson==3.9.1
|
55 |
+
packaging==23.1
|
56 |
+
pandas==2.0.2
|
57 |
+
Pillow==9.5.0
|
58 |
+
pkgutil_resolve_name==1.3.10
|
59 |
+
pydantic==1.10.9
|
60 |
+
pydub==0.25.1
|
61 |
+
Pygments==2.15.1
|
62 |
+
pyparsing==3.1.0
|
63 |
+
pyrsistent==0.19.3
|
64 |
+
python-dateutil==2.8.2
|
65 |
+
python-multipart==0.0.6
|
66 |
+
pytz==2023.3
|
67 |
+
PyYAML==6.0
|
68 |
+
regex==2023.6.3
|
69 |
+
requests==2.31.0
|
70 |
+
safetensors==0.3.1
|
71 |
+
semantic-version==2.10.0
|
72 |
+
six==1.16.0
|
73 |
+
sniffio==1.3.0
|
74 |
+
starlette==0.27.0
|
75 |
+
sympy==1.12
|
76 |
+
tokenizers==0.13.3
|
77 |
+
toolz==0.12.0
|
78 |
+
torch==2.0.1
|
79 |
+
tqdm==4.65.0
|
80 |
+
transformers==4.30.2
|
81 |
+
triton==2.0.0
|
82 |
+
typing_extensions==4.6.3
|
83 |
+
tzdata==2023.3
|
84 |
+
uc-micro-py==1.0.2
|
85 |
+
urllib3==2.0.3
|
86 |
+
uvicorn==0.22.0
|
87 |
+
websockets==11.0.3
|
88 |
+
yarl==1.9.2
|
89 |
+
zipp==3.15.0
|