# Gaepago model V1 (CPU Test) # import package from transformers import AutoModelForAudioClassification from transformers import AutoFeatureExtractor from transformers import pipeline from datasets import Dataset import gradio as gr import torch # Set model & Dataset NM MODEL_NAME = "Gae8J/gaepago-20" DATASET_NAME = "Gae8J/modeling_v1" # Import Model & feature extractor model = AutoModelForAudioClassification.from_pretrained(MODEL_NAME) feature_extractor = AutoFeatureExtractor.from_pretrained(MODEL_NAME) # 모델 cpu로 변경하여 진행 model.to("cpu") # Gaepago Inference Model function def gaepago_fn(tmp_audio_dir): print(tmp_audio_dir) audio_dataset = Dataset.from_dict({"audio": [tmp_audio_dir]}).cast_column("audio", Audio(sampling_rate=16000)) inputs = feature_extractor(audio_dataset[0]["audio"]["array"] ,sampling_rate=audio_dataset[0]["audio"]["sampling_rate"] ,return_tensors="pt") with torch.no_grad(): logits = model(**inputs).logits predicted_class_ids = torch.argmax(logits).item() predicted_label = model.config.id2label[predicted_class_ids] return predicted_label # Main main_api = gr.Blocks() with main_api: gr.Markdown("## 8J Gaepago Demo(with CPU)") with gr.Row(): audio = gr.Audio(source="microphone", type="filepath" ,label='녹음버튼을 눌러 초코가 하는 말을 들려주세요') transcription = gr.Textbox(label='지금 초코가 하는 말은...') b1 = gr.Button("강아지 언어 번역!") b1.click(gaepago_fn, inputs=audio, outputs=transcription) # examples = gr.Examples(examples=example_list, # inputs=[audio]) main_api.launch()