import gradio as gr from transformers import StableDiffusionPipeline import torch from PIL import Image import requests def generate_image(prompt): # Load the preprocessing and model pipeline # Here, we assume the Kvikontent/midjourney-v6 model has text-to-image capabilities in a manner similar to stable diffusion. # This part needs verification and adjustment according to actual model documentation and availability. model_id = "Kvikontent/midjourney-v6" device = "cuda" if torch.cuda.is_available() else "cpu" # Setup the model pipeline (this can be adjusted if the model's actual interface differs) # This example uses the typical usage pattern for generative models, but you should adjust according to the actual model's specs. pipe = StableDiffusionPipeline.from_pretrained(model_id, use_auth_token=True) # Replace with actual method to load Kvikontent/midjourney-v6 if different pipe = pipe.to(device) # Generating the image image = pipe(prompt).images[0] # This line assumes the return type is accessible like this, adjust this according to actual usage. # Convert tensor to PIL Image (adjust if the output format differs) image = Image.fromarray(image.numpy(), 'RGB') return image # Create a Gradio interface iface = gr.Interface(fn=generate_image, inputs=gr.inputs.Textbox(lines=2, placeholder="Enter your prompt here..."), outputs="image", title="Text to Image Generator", description="Type some text and generate an image using the Kvikontent/midjourney-v6 model.") # Running the application iface.launch()