Create utils.py
Browse files
utils.py
ADDED
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
2 |
+
#The below import has been replaced by the later one
|
3 |
+
#from langchain.vectorstores import Pinecone
|
4 |
+
from langchain_community.vectorstores import Pinecone
|
5 |
+
from langchain.embeddings.sentence_transformer import SentenceTransformerEmbeddings
|
6 |
+
#Pinecone as made some changes recently and we have to import it in the below way from now on :)
|
7 |
+
from pinecone import Pinecone as PineconeClient
|
8 |
+
import asyncio
|
9 |
+
from langchain.document_loaders.sitemap import SitemapLoader
|
10 |
+
|
11 |
+
|
12 |
+
#Function to fetch data from website
|
13 |
+
#https://python.langchain.com/docs/modules/data_connection/document_loaders/integrations/sitemap
|
14 |
+
sitemap_url="https://www.accenture.com/in-en/careers/jobsearch?jk=Data&sb=0&vw=1&is_rj=0&pg=1&jt=entry-level%20job"
|
15 |
+
def get_website_data(sitemap_url):
|
16 |
+
|
17 |
+
loop = asyncio.new_event_loop()
|
18 |
+
asyncio.set_event_loop(loop)
|
19 |
+
loader = SitemapLoader(sitemap_url)
|
20 |
+
|
21 |
+
docs = loader.load()
|
22 |
+
|
23 |
+
return docs
|
24 |
+
d=get_website_data(sitemap_url)
|
25 |
+
print(len(d))
|
26 |
+
#Function to split data into smaller chunks
|
27 |
+
def split_data(docs):
|
28 |
+
|
29 |
+
text_splitter = RecursiveCharacterTextSplitter(
|
30 |
+
chunk_size = 1000,
|
31 |
+
chunk_overlap = 200,
|
32 |
+
length_function = len,
|
33 |
+
)
|
34 |
+
|
35 |
+
docs_chunks = text_splitter.split_documents(docs)
|
36 |
+
return docs_chunks
|
37 |
+
|
38 |
+
#Function to create embeddings instance
|
39 |
+
def create_embeddings():
|
40 |
+
|
41 |
+
embeddings = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2")
|
42 |
+
return embeddings
|
43 |
+
|
44 |
+
#Function to push data to Pinecone
|
45 |
+
def push_to_pinecone(pinecone_apikey,pinecone_environment,pinecone_index_name,embeddings,docs):
|
46 |
+
|
47 |
+
PineconeClient(
|
48 |
+
api_key=pinecone_apikey,
|
49 |
+
environment=pinecone_environment
|
50 |
+
)
|
51 |
+
|
52 |
+
index_name = pinecone_index_name
|
53 |
+
#PineconeStore is an alias name of Pinecone class, please look at the imports section at the top :)
|
54 |
+
index = Pinecone.from_documents(docs, embeddings, index_name=index_name)
|
55 |
+
return index
|
56 |
+
|
57 |
+
#Function to pull index data from Pinecone
|
58 |
+
def pull_from_pinecone(pinecone_apikey,pinecone_environment,pinecone_index_name,embeddings):
|
59 |
+
|
60 |
+
PineconeClient(
|
61 |
+
api_key=pinecone_apikey,
|
62 |
+
environment=pinecone_environment
|
63 |
+
)
|
64 |
+
|
65 |
+
index_name = pinecone_index_name
|
66 |
+
#PineconeStore is an alias name of Pinecone class, please look at the imports section at the top :)
|
67 |
+
index = Pinecone.from_existing_index(index_name, embeddings)
|
68 |
+
return index
|
69 |
+
|
70 |
+
#This function will help us in fetching the top relevent documents from our vector store - Pinecone Index
|
71 |
+
def get_similar_docs(index,query,k=2):
|
72 |
+
|
73 |
+
similar_docs = index.similarity_search(query, k=k)
|
74 |
+
return similar_docs
|