Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,13 +1,282 @@
|
|
1 |
import gradio as gr
|
2 |
from huggingface_hub import InferenceClient
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
|
4 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
MODEL_NAME = "HuggingFaceH4/zephyr-7b-beta"
|
6 |
client = InferenceClient(MODEL_NAME)
|
7 |
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
-
|
10 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
for val in history:
|
13 |
if val[0]:
|
@@ -15,7 +284,7 @@ def respond(message, history, system_message, max_tokens, temperature, top_p):
|
|
15 |
if val[1]:
|
16 |
messages.append({"role": "assistant", "content": val[1]})
|
17 |
|
18 |
-
messages.append({"role": "user", "content":
|
19 |
|
20 |
response = ""
|
21 |
|
@@ -33,12 +302,12 @@ def respond(message, history, system_message, max_tokens, temperature, top_p):
|
|
33 |
except Exception as e:
|
34 |
yield f"Error: {str(e)}"
|
35 |
|
36 |
-
|
37 |
-
# Gradio UI with adjustable settings
|
38 |
demo = gr.ChatInterface(
|
39 |
respond,
|
40 |
additional_inputs=[
|
41 |
-
gr.
|
|
|
42 |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max Tokens"),
|
43 |
gr.Slider(minimum=0.1, maximum=2.0, value=0.7, step=0.1, label="Temperature"),
|
44 |
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p"),
|
|
|
1 |
import gradio as gr
|
2 |
from huggingface_hub import InferenceClient
|
3 |
+
import gradio as gr
|
4 |
+
import numpy as np
|
5 |
+
import cv2
|
6 |
+
import librosa
|
7 |
+
import moviepy.editor as mp
|
8 |
+
import speech_recognition as sr
|
9 |
+
import tempfile
|
10 |
+
import wave
|
11 |
+
import os
|
12 |
+
import tensorflow as tf
|
13 |
+
from tensorflow.keras.preprocessing.text import tokenizer_from_json
|
14 |
+
from tensorflow.keras.models import load_model, model_from_json
|
15 |
+
from sklearn.preprocessing import StandardScaler
|
16 |
+
from tensorflow.keras.preprocessing.sequence import pad_sequences
|
17 |
+
import nltk
|
18 |
+
nltk.download('stopwords')
|
19 |
+
nltk.download('punkt')
|
20 |
+
nltk.download('punkt_tab')
|
21 |
+
nltk.download('wordnet')
|
22 |
+
from nltk.corpus import stopwords
|
23 |
+
from nltk.stem import WordNetLemmatizer
|
24 |
+
import pickle
|
25 |
+
import json
|
26 |
+
from tensorflow.keras.preprocessing.image import img_to_array, load_img
|
27 |
+
from collections import Counter
|
28 |
+
# Load the text model
|
29 |
+
with open('model_architecture_for_text_emotion_updated_json.json', 'r') as json_file:
|
30 |
+
model_json = json_file.read()
|
31 |
+
text_model = model_from_json(model_json)
|
32 |
+
text_model.load_weights("model_for_text_emotion_updated(1).keras")
|
33 |
+
|
34 |
+
# Load the encoder and scaler for audio
|
35 |
+
with open('encoder.pkl', 'rb') as file:
|
36 |
+
encoder = pickle.load(file)
|
37 |
+
with open('scaler.pkl', 'rb') as file:
|
38 |
+
scaler = pickle.load(file)
|
39 |
+
|
40 |
+
# Load the tokenizer for text
|
41 |
+
with open('tokenizer.json') as json_file:
|
42 |
+
tokenizer_json = json.load(json_file)
|
43 |
+
tokenizer = tokenizer_from_json(tokenizer_json)
|
44 |
+
|
45 |
+
# Load the audio model
|
46 |
+
audio_model = load_model('my_model.h5')
|
47 |
+
|
48 |
+
# Load the image model
|
49 |
+
image_model = load_model('model_emotion.h5')
|
50 |
+
|
51 |
+
# Initialize NLTK
|
52 |
+
lemmatizer = WordNetLemmatizer()
|
53 |
+
stop_words = set(stopwords.words('english'))
|
54 |
+
|
55 |
+
# Preprocess text function
|
56 |
+
def preprocess_text(text):
|
57 |
+
tokens = nltk.word_tokenize(text.lower())
|
58 |
+
tokens = [word for word in tokens if word.isalnum() and word not in stop_words]
|
59 |
+
lemmatized_tokens = [lemmatizer.lemmatize(word) for word in tokens]
|
60 |
+
return ' '.join(lemmatized_tokens)
|
61 |
+
|
62 |
+
# Extract features from audio
|
63 |
+
# Extract features from audio
|
64 |
+
def extract_features(data, sample_rate):
|
65 |
+
result = []
|
66 |
+
|
67 |
+
try:
|
68 |
+
zcr = np.mean(librosa.feature.zero_crossing_rate(y=data).T, axis=0)
|
69 |
+
result.append(zcr)
|
70 |
+
|
71 |
+
stft = np.abs(librosa.stft(data))
|
72 |
+
chroma_stft = np.mean(librosa.feature.chroma_stft(S=stft, sr=sample_rate).T, axis=0)
|
73 |
+
result.append(chroma_stft)
|
74 |
+
|
75 |
+
mfcc = np.mean(librosa.feature.mfcc(y=data, sr=sample_rate).T, axis=0)
|
76 |
+
result.append(mfcc)
|
77 |
+
|
78 |
+
rms = np.mean(librosa.feature.rms(y=data).T, axis=0)
|
79 |
+
result.append(rms)
|
80 |
+
|
81 |
+
mel = np.mean(librosa.feature.melspectrogram(y=data, sr=sample_rate).T, axis=0)
|
82 |
+
result.append(mel)
|
83 |
+
|
84 |
+
# Ensure all features are numpy arrays
|
85 |
+
result = [np.atleast_1d(feature) for feature in result]
|
86 |
+
|
87 |
+
# Stack features horizontally
|
88 |
+
return np.hstack(result)
|
89 |
+
|
90 |
+
except Exception as e:
|
91 |
+
print(f"Error extracting features: {e}")
|
92 |
+
return np.zeros(1) # Return a default feature array if extraction fails
|
93 |
|
94 |
+
# Predict emotion from text
|
95 |
+
def find_emotion_using_text(sample_rate, audio_data, recognizer):
|
96 |
+
mapping = {0: "anger", 1: "disgust", 2: "fear", 3: "joy", 4: "neutral", 5: "sadness", 6: "surprise"}
|
97 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as temp_audio_file:
|
98 |
+
temp_audio_path = temp_audio_file.name
|
99 |
+
|
100 |
+
with wave.open(temp_audio_path, 'w') as wf:
|
101 |
+
wf.setnchannels(1)
|
102 |
+
wf.setsampwidth(2)
|
103 |
+
wf.setframerate(sample_rate)
|
104 |
+
wf.writeframes(audio_data.tobytes())
|
105 |
+
|
106 |
+
with sr.AudioFile(temp_audio_path) as source:
|
107 |
+
audio_record = recognizer.record(source)
|
108 |
+
text = recognizer.recognize_google(audio_record)
|
109 |
+
pre_text = preprocess_text(text)
|
110 |
+
title_seq = tokenizer.texts_to_sequences([pre_text])
|
111 |
+
padded_title_seq = pad_sequences(title_seq, maxlen=35, padding='post', truncating='post')
|
112 |
+
inp1 = np.array(padded_title_seq)
|
113 |
+
text_prediction = text_model.predict(inp1)
|
114 |
+
|
115 |
+
os.remove(temp_audio_path)
|
116 |
+
max_index = text_prediction.argmax()
|
117 |
+
return mapping[max_index]
|
118 |
+
|
119 |
+
# Predict emotion from audio
|
120 |
+
def predict_emotion(audio_data):
|
121 |
+
sample_rate, data = audio_data
|
122 |
+
data = data.flatten()
|
123 |
+
|
124 |
+
if data.dtype != np.float32:
|
125 |
+
data = data.astype(np.float32)
|
126 |
+
data = data / np.max(np.abs(data))
|
127 |
+
|
128 |
+
features = extract_features(data, sample_rate)
|
129 |
+
features = np.expand_dims(features, axis=0)
|
130 |
+
|
131 |
+
if features.ndim == 3:
|
132 |
+
features = np.squeeze(features, axis=2)
|
133 |
+
elif features.ndim != 2:
|
134 |
+
raise ValueError("Features array has unexpected dimensions.")
|
135 |
+
|
136 |
+
scaled_features = scaler.transform(features)
|
137 |
+
scaled_features = np.expand_dims(scaled_features, axis=2)
|
138 |
+
|
139 |
+
prediction = audio_model.predict(scaled_features)
|
140 |
+
emotion_index = np.argmax(prediction)
|
141 |
+
|
142 |
+
num_classes = len(encoder.categories_[0])
|
143 |
+
emotion_array = np.zeros((1, num_classes))
|
144 |
+
emotion_array[0, emotion_index] = 1
|
145 |
+
|
146 |
+
emotion_label = encoder.inverse_transform(emotion_array)[0]
|
147 |
+
return emotion_label
|
148 |
+
|
149 |
+
# Preprocess image
|
150 |
+
def preprocess_image(image):
|
151 |
+
image = load_img(image, target_size=(48, 48), color_mode="grayscale")
|
152 |
+
image = img_to_array(image)
|
153 |
+
image = np.expand_dims(image, axis=0)
|
154 |
+
image = image / 255.0
|
155 |
+
return image
|
156 |
+
|
157 |
+
# Predict emotion from image
|
158 |
+
def predict_emotion_from_image(image):
|
159 |
+
preprocessed_image = preprocess_image(image)
|
160 |
+
prediction = image_model.predict(preprocessed_image)
|
161 |
+
emotion_index = np.argmax(prediction)
|
162 |
+
|
163 |
+
mapping = {0: "anger", 1: "disgust", 2: "fear", 3: "joy", 4: "neutral", 5: "sadness", 6: "surprise"}
|
164 |
+
return mapping[emotion_index]
|
165 |
+
|
166 |
+
# Main function to handle text, audio, and image emotion recognition
|
167 |
+
# Load the models and other necessary files (as before)
|
168 |
+
|
169 |
+
# Preprocess image (as before)
|
170 |
+
|
171 |
+
# Predict emotion from image (as before)
|
172 |
+
|
173 |
+
# Extract features from audio (as before)
|
174 |
+
|
175 |
+
# Predict emotion from text (as before)
|
176 |
+
|
177 |
+
# Predict emotion from audio (as before)
|
178 |
+
|
179 |
+
def process_video(video_path):
|
180 |
+
cap = cv2.VideoCapture(video_path)
|
181 |
+
frame_rate = cap.get(cv2.CAP_PROP_FPS)
|
182 |
+
|
183 |
+
frame_count = 0
|
184 |
+
predictions = []
|
185 |
+
|
186 |
+
while cap.isOpened():
|
187 |
+
ret, frame = cap.read()
|
188 |
+
if not ret:
|
189 |
+
break
|
190 |
+
# Process every nth frame (to speed up processing)
|
191 |
+
if frame_count % int(frame_rate) == 0:
|
192 |
+
# Convert frame to grayscale as required by your model
|
193 |
+
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
|
194 |
+
frame = cv2.resize(frame, (48, 48)) # Resize to match model input size
|
195 |
+
frame = img_to_array(frame)
|
196 |
+
frame = np.expand_dims(frame, axis=0) / 255.0
|
197 |
+
|
198 |
+
# Predict emotion
|
199 |
+
prediction = image_model.predict(frame)
|
200 |
+
predictions.append(np.argmax(prediction))
|
201 |
+
|
202 |
+
frame_count += 1
|
203 |
+
|
204 |
+
cap.release()
|
205 |
+
# cv2.destroyAllWindows()
|
206 |
+
|
207 |
+
# Find the most common prediction
|
208 |
+
most_common_emotion = Counter(predictions).most_common(1)[0][0]
|
209 |
+
mapping = {0: "anger", 1: "disgust", 2: "fear", 3: "joy", 4: "neutral", 5: "sadness", 6: "surprise"}
|
210 |
+
return mapping[most_common_emotion]
|
211 |
+
|
212 |
+
# Process audio from video and predict emotions
|
213 |
+
def process_audio_from_video(video_path):
|
214 |
+
video = mp.VideoFileClip(video_path)
|
215 |
+
audio = video.audio
|
216 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as temp_audio_file:
|
217 |
+
temp_audio_path = temp_audio_file.name
|
218 |
+
audio.write_audiofile(temp_audio_path)
|
219 |
+
|
220 |
+
recognizer = sr.Recognizer()
|
221 |
+
with sr.AudioFile(temp_audio_path) as source:
|
222 |
+
audio_record = recognizer.record(source)
|
223 |
+
text = recognizer.recognize_google(audio_record)
|
224 |
+
pre_text = preprocess_text(text)
|
225 |
+
title_seq = tokenizer.texts_to_sequences([pre_text])
|
226 |
+
padded_title_seq = pad_sequences(title_seq, maxlen=35, padding='post', truncating='post')
|
227 |
+
inp1 = np.array(padded_title_seq)
|
228 |
+
text_prediction = text_model.predict(inp1)
|
229 |
+
|
230 |
+
os.remove(temp_audio_path)
|
231 |
+
|
232 |
+
max_index = text_prediction.argmax()
|
233 |
+
text_emotion = {0: "anger", 1: "disgust", 2: "fear", 3: "joy", 4: "neutral", 5: "sadness", 6: "surprise"}[max_index]
|
234 |
+
|
235 |
+
audio_emotion = predict_emotion((audio.fps, np.array(audio.to_soundarray())))
|
236 |
+
|
237 |
+
return text_emotion, audio_emotion, text
|
238 |
+
|
239 |
+
# Main function to handle video emotion recognition
|
240 |
+
def transcribe_and_predict_video(video):
|
241 |
+
"""
|
242 |
+
Process video for emotion detection (image, audio, text) and transcription.
|
243 |
+
(Replace process_video & process_audio_from_video with actual implementations)
|
244 |
+
"""
|
245 |
+
image_emotion = process_video(video) # Emotion from video frames
|
246 |
+
print("Image processing done.")
|
247 |
+
|
248 |
+
text_emotion, audio_emotion, extracted_text = process_audio_from_video(video) # Speech-to-text + emotions
|
249 |
+
print("Audio processing done.")
|
250 |
+
|
251 |
+
return {
|
252 |
+
"text_emotion": text_emotion,
|
253 |
+
"audio_emotion": audio_emotion,
|
254 |
+
"image_emotion": image_emotion,
|
255 |
+
"extracted_text": extracted_text,
|
256 |
+
}
|
257 |
+
|
258 |
+
# Load Zephyr-7B Model
|
259 |
MODEL_NAME = "HuggingFaceH4/zephyr-7b-beta"
|
260 |
client = InferenceClient(MODEL_NAME)
|
261 |
|
262 |
+
# Chatbot response function
|
263 |
+
def respond(video, history, system_message, max_tokens, temperature, top_p):
|
264 |
+
video_path = video.name # Get the uploaded video file path
|
265 |
+
|
266 |
+
# Process the video for emotions & text
|
267 |
+
result = transcribe_and_predict_video(video_path)
|
268 |
|
269 |
+
# Construct a system prompt with extracted emotions & text
|
270 |
+
system_prompt = (
|
271 |
+
f"{system_message}\n\n"
|
272 |
+
f"Detected Emotions:\n"
|
273 |
+
f"- Text Emotion: {result['text_emotion']}\n"
|
274 |
+
f"- Audio Emotion: {result['audio_emotion']}\n"
|
275 |
+
f"- Image Emotion: {result['image_emotion']}\n\n"
|
276 |
+
f"Extracted Speech: {result['extracted_text']}"
|
277 |
+
)
|
278 |
+
|
279 |
+
messages = [{"role": "system", "content": system_prompt}]
|
280 |
|
281 |
for val in history:
|
282 |
if val[0]:
|
|
|
284 |
if val[1]:
|
285 |
messages.append({"role": "assistant", "content": val[1]})
|
286 |
|
287 |
+
messages.append({"role": "user", "content": result['extracted_text']})
|
288 |
|
289 |
response = ""
|
290 |
|
|
|
302 |
except Exception as e:
|
303 |
yield f"Error: {str(e)}"
|
304 |
|
305 |
+
# Gradio UI for video chatbot
|
|
|
306 |
demo = gr.ChatInterface(
|
307 |
respond,
|
308 |
additional_inputs=[
|
309 |
+
gr.Video(label="Upload a Video"), # Video input
|
310 |
+
gr.Textbox(value="You are a chatbot that analyzes emotions and responds accordingly.", label="System message"),
|
311 |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max Tokens"),
|
312 |
gr.Slider(minimum=0.1, maximum=2.0, value=0.7, step=0.1, label="Temperature"),
|
313 |
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p"),
|