GatinhoEducado commited on
Commit
6e5cca5
1 Parent(s): 134346b

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +14 -5
app.py CHANGED
@@ -9,12 +9,20 @@ from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Proce
9
  device = "cuda:0" if torch.cuda.is_available() else "cpu"
10
 
11
  # load speech translation checkpoint
12
- asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
 
 
 
 
 
 
 
 
13
 
14
  # load text-to-speech checkpoint and speaker embeddings
15
- processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
16
 
17
- model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts").to(device)
18
  vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
19
 
20
  embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
@@ -22,7 +30,8 @@ speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze
22
 
23
 
24
  def translate(audio):
25
- outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "translate"})
 
26
  return outputs["text"]
27
 
28
 
@@ -41,7 +50,7 @@ def speech_to_speech_translation(audio):
41
 
42
  title = "Cascaded STST"
43
  description = """
44
- Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in English. Demo uses OpenAI's [Whisper Base](https://huggingface.co/openai/whisper-base) model for speech translation, and Microsoft's
45
  [SpeechT5 TTS](https://huggingface.co/microsoft/speecht5_tts) model for text-to-speech:
46
 
47
  ![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation")
 
9
  device = "cuda:0" if torch.cuda.is_available() else "cpu"
10
 
11
  # load speech translation checkpoint
12
+ asr_pipe = pipeline(
13
+ "automatic-speech-recognition",
14
+ model="GatinhoEducado/whisper-tiny-finetuned-minds14",
15
+ device=device,
16
+ generate_kwargs = {"language":"<|pt|>",
17
+ "task": "transcribe",
18
+ "repetition_penalty":1.5
19
+ }
20
+ )
21
 
22
  # load text-to-speech checkpoint and speaker embeddings
23
+ processor = SpeechT5Processor.from_pretrained("GatinhoEducado/speechT5_tts-finetuned-cml-tts")
24
 
25
+ model = SpeechT5ForTextToSpeech.from_pretrained("GatinhoEducado/speechT5_tts-finetuned-cml-tts").to(device)
26
  vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
27
 
28
  embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
 
30
 
31
 
32
  def translate(audio):
33
+ #outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "translate"})
34
+ outputs = asr_pipe(audio, max_new_tokens=100)
35
  return outputs["text"]
36
 
37
 
 
50
 
51
  title = "Cascaded STST"
52
  description = """
53
+ Demo for cascaded speech-to-speech translation (STST), mapping from source speech in English to target Portuguese speech. Demo uses OpenAI's [Whisper Base](https://huggingface.co/openai/whisper-base) model for speech translation, and Microsoft's
54
  [SpeechT5 TTS](https://huggingface.co/microsoft/speecht5_tts) model for text-to-speech:
55
 
56
  ![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation")