GatinhoEducado
commited on
Commit
•
6e5cca5
1
Parent(s):
134346b
Update app.py
Browse files
app.py
CHANGED
@@ -9,12 +9,20 @@ from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Proce
|
|
9 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
10 |
|
11 |
# load speech translation checkpoint
|
12 |
-
asr_pipe = pipeline(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
# load text-to-speech checkpoint and speaker embeddings
|
15 |
-
processor = SpeechT5Processor.from_pretrained("
|
16 |
|
17 |
-
model = SpeechT5ForTextToSpeech.from_pretrained("
|
18 |
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
|
19 |
|
20 |
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
|
@@ -22,7 +30,8 @@ speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze
|
|
22 |
|
23 |
|
24 |
def translate(audio):
|
25 |
-
outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "translate"})
|
|
|
26 |
return outputs["text"]
|
27 |
|
28 |
|
@@ -41,7 +50,7 @@ def speech_to_speech_translation(audio):
|
|
41 |
|
42 |
title = "Cascaded STST"
|
43 |
description = """
|
44 |
-
Demo for cascaded speech-to-speech translation (STST), mapping from source speech in
|
45 |
[SpeechT5 TTS](https://huggingface.co/microsoft/speecht5_tts) model for text-to-speech:
|
46 |
|
47 |
![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation")
|
|
|
9 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
10 |
|
11 |
# load speech translation checkpoint
|
12 |
+
asr_pipe = pipeline(
|
13 |
+
"automatic-speech-recognition",
|
14 |
+
model="GatinhoEducado/whisper-tiny-finetuned-minds14",
|
15 |
+
device=device,
|
16 |
+
generate_kwargs = {"language":"<|pt|>",
|
17 |
+
"task": "transcribe",
|
18 |
+
"repetition_penalty":1.5
|
19 |
+
}
|
20 |
+
)
|
21 |
|
22 |
# load text-to-speech checkpoint and speaker embeddings
|
23 |
+
processor = SpeechT5Processor.from_pretrained("GatinhoEducado/speechT5_tts-finetuned-cml-tts")
|
24 |
|
25 |
+
model = SpeechT5ForTextToSpeech.from_pretrained("GatinhoEducado/speechT5_tts-finetuned-cml-tts").to(device)
|
26 |
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
|
27 |
|
28 |
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
|
|
|
30 |
|
31 |
|
32 |
def translate(audio):
|
33 |
+
#outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "translate"})
|
34 |
+
outputs = asr_pipe(audio, max_new_tokens=100)
|
35 |
return outputs["text"]
|
36 |
|
37 |
|
|
|
50 |
|
51 |
title = "Cascaded STST"
|
52 |
description = """
|
53 |
+
Demo for cascaded speech-to-speech translation (STST), mapping from source speech in English to target Portuguese speech. Demo uses OpenAI's [Whisper Base](https://huggingface.co/openai/whisper-base) model for speech translation, and Microsoft's
|
54 |
[SpeechT5 TTS](https://huggingface.co/microsoft/speecht5_tts) model for text-to-speech:
|
55 |
|
56 |
![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation")
|