import torch from transformers import AutoTokenizer, AutoModelForSequenceClassification # Disk path where saved model & tokenizer is located save_dir = (r"./ml_engine/saved-model") #relative path acc. to "ebookify-backend/" directory (i.e the root directory of the backend) # Load the saved model and tokeniser from the disk loaded_tokeniser = AutoTokenizer.from_pretrained(save_dir) loaded_model = AutoModelForSequenceClassification.from_pretrained(save_dir) def is_it_title(string): # Input input = loaded_tokeniser(string, return_tensors='pt') with torch.no_grad(): output = loaded_model(**input).logits.item() # print(output.logits.item()) if(output >= 0.6): return True else: return False if __name__ == "__main__": print(is_it_title("Secret to Success lies in hardwork and nothing else!"))