Spaces:
Running
Running
GenAICoder
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
import streamlit as st
|
2 |
-
from langchain_community.llms import
|
3 |
from langchain_core.runnables import RunnablePassthrough
|
4 |
from langchain_core.output_parsers import StrOutputParser
|
5 |
from langchain.prompts import ChatPromptTemplate
|
@@ -17,22 +17,22 @@ from langchain_community.embeddings import HuggingFaceEmbeddings
|
|
17 |
#from transformers import AutoModelForCausalLM
|
18 |
#from langchain_community.llms.huggingface_pipeline import HuggingFacePipeline
|
19 |
#from llama_index.core import StorageContext, load_index_from_storage, VectorStoreIndex, SimpleDirectoryReader, ChatPromptTemplate
|
20 |
-
from llama_index.llms.huggingface import HuggingFaceInferenceAPI
|
21 |
#from llama_index.embeddings.huggingface import HuggingFaceEmbedding
|
22 |
-
from llama_index.core import Settings
|
23 |
|
24 |
|
25 |
#access_token = os.getenv("HUGGINGFACE_API_KEY")
|
26 |
|
27 |
# Configure the Llama index settings
|
28 |
-
llm = HuggingFaceInferenceAPI(
|
29 |
-
model_name="meta-llama/Meta-Llama-3-8B-Instruct",
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
# max_new_tokens=1000,
|
34 |
-
|
35 |
-
)
|
36 |
|
37 |
|
38 |
#st.set_page_config(page_title="Document Genie", layout="wide")
|
@@ -112,7 +112,13 @@ def get_conversational_chain(retriever):
|
|
112 |
#model_id="gpt2",
|
113 |
#task="text-generation",
|
114 |
#pipeline_kwargs={"max_new_tokens": 10})
|
|
|
115 |
|
|
|
|
|
|
|
|
|
|
|
116 |
pt = ChatPromptTemplate.get_template(prompt_template)
|
117 |
# Retrieve and generate using the relevant snippets of the blog.
|
118 |
#retriever = db.as_retriever()
|
|
|
1 |
import streamlit as st
|
2 |
+
from langchain_community.llms import HuggingFaceHub
|
3 |
from langchain_core.runnables import RunnablePassthrough
|
4 |
from langchain_core.output_parsers import StrOutputParser
|
5 |
from langchain.prompts import ChatPromptTemplate
|
|
|
17 |
#from transformers import AutoModelForCausalLM
|
18 |
#from langchain_community.llms.huggingface_pipeline import HuggingFacePipeline
|
19 |
#from llama_index.core import StorageContext, load_index_from_storage, VectorStoreIndex, SimpleDirectoryReader, ChatPromptTemplate
|
20 |
+
#from llama_index.llms.huggingface import HuggingFaceInferenceAPI
|
21 |
#from llama_index.embeddings.huggingface import HuggingFaceEmbedding
|
22 |
+
#from llama_index.core import Settings
|
23 |
|
24 |
|
25 |
#access_token = os.getenv("HUGGINGFACE_API_KEY")
|
26 |
|
27 |
# Configure the Llama index settings
|
28 |
+
#llm = HuggingFaceInferenceAPI(
|
29 |
+
# model_name="meta-llama/Meta-Llama-3-8B-Instruct",
|
30 |
+
# tokenizer_name="meta-llama/Meta-Llama-3-8B-Instruct",
|
31 |
+
# context_window=3900,
|
32 |
+
# token=os.getenv("HUGGINGFACE_API_KEY"),
|
33 |
# max_new_tokens=1000,
|
34 |
+
# generate_kwargs={"temperature": 0.1},
|
35 |
+
#)
|
36 |
|
37 |
|
38 |
#st.set_page_config(page_title="Document Genie", layout="wide")
|
|
|
112 |
#model_id="gpt2",
|
113 |
#task="text-generation",
|
114 |
#pipeline_kwargs={"max_new_tokens": 10})
|
115 |
+
#from langchain_community.llms import HuggingFaceHub
|
116 |
|
117 |
+
llm = HuggingFaceHub(
|
118 |
+
repo_id="HuggingFaceH4/zephyr-7b-beta",
|
119 |
+
huggingfacehub_api_token="<HF_TOKEN_HERE>",
|
120 |
+
task="text-generation",
|
121 |
+
)
|
122 |
pt = ChatPromptTemplate.get_template(prompt_template)
|
123 |
# Retrieve and generate using the relevant snippets of the blog.
|
124 |
#retriever = db.as_retriever()
|