from transformers import pipeline import os import gradio as gr import torch #Text to text #translator = pipeline(task="translation", # model="facebook/nllb-200-distilled-600M", # torch_dtype=torch.bfloat16) #Text to audio pipe = pipeline("text-to-speech", model="suno/bark-small") demo = gr.Blocks() def transcribe_speech(filepath): if filepath is None: gr.Warning("No text found, please retry.") return "" narrated_text=pipe(filepath) return narrated_text['sampling_rate'],narrated_text['audio'] mic_transcribe = gr.Interface( fn=transcribe_speech, inputs=gr.Textbox(label="Text",lines=3), outputs="audio", allow_flagging="never") file_transcribe = gr.Interface( fn=transcribe_speech, inputs=gr.Audio(sources="upload", type="filepath"), outputs="audio", #outputs=gr.Audio(label="Translated Message"), allow_flagging="never" ) with demo: gr.TabbedInterface( [mic_transcribe], ["Transcribe Microphone"], ) demo.launch(share=True) demo.close()