File size: 3,105 Bytes
d80a719
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
I'll analyze the FrameVis script and break down its key functionality.

### Core Purpose
FrameVis is a Python script that creates a visual representation of a video by extracting frames at regular intervals and combining them into a single image. It's essentially creating what's sometimes called a "movie barcode."

### Key Components

1. **Main Class: FrameVis**
   - Primary class that handles the video frame extraction and visualization
   - Default settings for frame dimensions and concatenation direction
   - Main method: `visualize()` which does the heavy lifting

2. **Supporting Classes:**
   - `MatteTrimmer`: Handles detection and removal of black bars (letterboxing/pillarboxing)
   - `ProgressBar`: Provides console feedback during processing

### Core Workflow

1. **Input Processing**
```python
# Takes key parameters:
- source: video file path
- nframes: number of frames to extract
- height/width: dimensions for output frames
- direction: horizontal/vertical concatenation
- trim: whether to remove black bars
```

2. **Frame Extraction Logic**
```python
# Calculates frame interval
video_total_frames = video.get(cv2.CAP_PROP_FRAME_COUNT)
keyframe_interval = video_total_frames / nframes

# Frames are extracted at regular intervals:
next_keyframe = keyframe_interval / 2  # Starts from middle of first interval
```

3. **Frame Processing**
   - Reads frames using OpenCV
   - Optionally trims black bars
   - Resizes frames to specified dimensions
   - Concatenates frames either horizontally or vertically

4. **Post-Processing Options**
   - `average_image()`: Creates a color average across frames
   - `motion_blur()`: Applies directional blur effect

### Special Features

1. **Matte Detection**
   - Automatically detects and removes letterboxing/pillarboxing
   - Samples multiple frames to ensure consistent detection
   - Uses threshold-based detection for black bars

2. **Flexible Output**
   - Can output horizontally (traditional movie barcode)
   - Can output vertically (stacked frames)
   - Supports automatic dimension calculation

3. **Time-Based Frame Selection**
```python
# Can specify frames either by:
- Total number of frames (-n/--nframes)
- Time interval between frames (-i/--interval)
```

### Command Line Interface
```python
# Supports various arguments:
-n/--nframes: Number of frames
-i/--interval: Time between frames
-h/--height: Frame height
-w/--width: Frame width
-d/--direction: Concatenation direction
-t/--trim: Auto-trim black bars
-a/--average: Average colors
-b/--blur: Apply motion blur
-q/--quiet: Suppress output
```

### Error Handling
- Validates input parameters
- Checks for file existence
- Ensures frame counts are valid
- Handles video reading errors

### Performance Considerations
- Uses OpenCV for efficient video processing
- Maintains float precision for frame intervals
- Only loads required frames rather than entire video

This is a well-structured script that provides a robust set of features for video frame visualization while maintaining good error handling and user feedback through progress bars and console output.