back to gradio
Browse files- __pycache__/framevis.cpython-312.pyc +0 -0
- app.py +9 -124
__pycache__/framevis.cpython-312.pyc
ADDED
Binary file (23.2 kB). View file
|
|
app.py
CHANGED
@@ -1,84 +1,15 @@
|
|
1 |
import gradio as gr
|
2 |
import cv2
|
3 |
import numpy as np
|
4 |
-
import tempfile
|
5 |
-
import os
|
6 |
from framevis import FrameVis
|
7 |
-
import json
|
8 |
-
|
9 |
-
class InteractiveFrameVis(FrameVis):
|
10 |
-
"""Extended FrameVis class that tracks frame positions"""
|
11 |
-
|
12 |
-
def visualize(self, source, nframes, height=None, width=None, direction="horizontal", trim=False, quiet=True):
|
13 |
-
"""Extended visualize method that returns both the visualization and frame data"""
|
14 |
-
video = cv2.VideoCapture(source)
|
15 |
-
if not video.isOpened():
|
16 |
-
raise FileNotFoundError("Source Video Not Found")
|
17 |
-
|
18 |
-
# Calculate frame positions and timestamps
|
19 |
-
total_frames = video.get(cv2.CAP_PROP_FRAME_COUNT)
|
20 |
-
fps = video.get(cv2.CAP_PROP_FPS)
|
21 |
-
keyframe_interval = total_frames / nframes
|
22 |
-
|
23 |
-
# Get the visualization
|
24 |
-
output_image = super().visualize(source, nframes, height, width, direction, trim, quiet)
|
25 |
-
|
26 |
-
# Calculate frame positions and timestamps
|
27 |
-
frame_data = []
|
28 |
-
img_height, img_width = output_image.shape[:2]
|
29 |
-
|
30 |
-
for i in range(nframes):
|
31 |
-
frame_pos = int(keyframe_interval * (i + 0.5)) # Same calculation as in visualize
|
32 |
-
timestamp = frame_pos / fps
|
33 |
-
|
34 |
-
if direction == "horizontal":
|
35 |
-
x_start = (i * img_width) // nframes
|
36 |
-
x_end = ((i + 1) * img_width) // nframes
|
37 |
-
frame_info = {
|
38 |
-
"frame": frame_pos,
|
39 |
-
"time": timestamp,
|
40 |
-
"x_start": int(x_start),
|
41 |
-
"x_end": int(x_end),
|
42 |
-
"y_start": 0,
|
43 |
-
"y_end": img_height
|
44 |
-
}
|
45 |
-
else: # vertical
|
46 |
-
y_start = (i * img_height) // nframes
|
47 |
-
y_end = ((i + 1) * img_height) // nframes
|
48 |
-
frame_info = {
|
49 |
-
"frame": frame_pos,
|
50 |
-
"time": timestamp,
|
51 |
-
"x_start": 0,
|
52 |
-
"x_end": img_width,
|
53 |
-
"y_start": int(y_start),
|
54 |
-
"y_end": int(y_end)
|
55 |
-
}
|
56 |
-
frame_data.append(frame_info)
|
57 |
-
|
58 |
-
video.release()
|
59 |
-
return output_image, frame_data
|
60 |
-
|
61 |
-
def extract_frame(video_path, frame_number):
|
62 |
-
"""Extract a specific frame from the video"""
|
63 |
-
if not video_path:
|
64 |
-
return None
|
65 |
-
|
66 |
-
cap = cv2.VideoCapture(video_path)
|
67 |
-
cap.set(cv2.CAP_PROP_POS_FRAMES, frame_number)
|
68 |
-
ret, frame = cap.read()
|
69 |
-
cap.release()
|
70 |
-
|
71 |
-
if ret:
|
72 |
-
return cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
73 |
-
return None
|
74 |
|
75 |
def process_video(video_path, nframes, height, width, direction, trim, average, blur_amount):
|
76 |
-
"""Process video using FrameVis and return the visualization
|
77 |
try:
|
78 |
-
fv =
|
79 |
|
80 |
# Process the video
|
81 |
-
output_image
|
82 |
video_path,
|
83 |
nframes=nframes,
|
84 |
height=height if height > 0 else None,
|
@@ -96,53 +27,17 @@ def process_video(video_path, nframes, height, width, direction, trim, average,
|
|
96 |
|
97 |
# Convert from BGR to RGB for Gradio
|
98 |
output_image = cv2.cvtColor(output_image, cv2.COLOR_BGR2RGB)
|
99 |
-
|
100 |
-
# Store frame data in a temporary file
|
101 |
-
temp_dir = tempfile.gettempdir()
|
102 |
-
data_path = os.path.join(temp_dir, "frame_data.json")
|
103 |
-
with open(data_path, "w") as f:
|
104 |
-
json.dump({"video_path": video_path, "frames": frame_data}, f)
|
105 |
-
|
106 |
-
return output_image, data_path
|
107 |
|
108 |
except Exception as e:
|
109 |
raise gr.Error(str(e))
|
110 |
|
111 |
-
def on_mouse_move(evt: gr.EventData, frame_data_path):
|
112 |
-
"""Handle mouseover on the visualization image"""
|
113 |
-
if not frame_data_path:
|
114 |
-
return None
|
115 |
-
|
116 |
-
try:
|
117 |
-
# Load frame data
|
118 |
-
with open(frame_data_path) as f:
|
119 |
-
data = json.load(f)
|
120 |
-
|
121 |
-
video_path = data["video_path"]
|
122 |
-
frames = data["frames"]
|
123 |
-
|
124 |
-
# Get mouse coordinates
|
125 |
-
x, y = evt.index[0], evt.index[1] # Extract x, y from index
|
126 |
-
|
127 |
-
# Find which frame was hovered
|
128 |
-
for frame in frames:
|
129 |
-
if (frame["x_start"] <= x <= frame["x_end"] and
|
130 |
-
frame["y_start"] <= y <= frame["y_end"]):
|
131 |
-
# Extract and return the frame
|
132 |
-
preview = extract_frame(video_path, frame["frame"])
|
133 |
-
if preview is not None:
|
134 |
-
return preview, f"Frame {frame['frame']} (Time: {frame['time']:.2f}s)"
|
135 |
-
|
136 |
-
except Exception as e:
|
137 |
-
print(f"Error handling mouseover: {e}")
|
138 |
-
return None, ""
|
139 |
-
|
140 |
# Create the Gradio interface
|
141 |
with gr.Blocks(title="FrameVis - Video Frame Visualizer") as demo:
|
142 |
gr.Markdown("""
|
143 |
# 🎬 FrameVis - Video Frame Visualizer
|
144 |
Upload a video to create a beautiful visualization of its frames. The tool will extract frames at regular intervals
|
145 |
-
and combine them into a single image.
|
146 |
""")
|
147 |
|
148 |
with gr.Row():
|
@@ -168,14 +63,11 @@ with gr.Blocks(title="FrameVis - Video Frame Visualizer") as demo:
|
|
168 |
process_btn = gr.Button("Generate Visualization", variant="primary")
|
169 |
|
170 |
with gr.Column(scale=2):
|
171 |
-
# Output
|
172 |
-
|
173 |
-
output_image = gr.Image(label="Visualization Result", tool="select", height=300)
|
174 |
-
frame_info = gr.Markdown("Click on the visualization to see frame details")
|
175 |
-
preview_frame = gr.Image(label="Frame Preview", interactive=False, height=300)
|
176 |
|
177 |
# Handle processing
|
178 |
-
|
179 |
fn=process_video,
|
180 |
inputs=[
|
181 |
video_input,
|
@@ -187,14 +79,7 @@ with gr.Blocks(title="FrameVis - Video Frame Visualizer") as demo:
|
|
187 |
average,
|
188 |
blur_amount
|
189 |
],
|
190 |
-
outputs=
|
191 |
-
)
|
192 |
-
|
193 |
-
# Handle selection events
|
194 |
-
output_image.select(
|
195 |
-
fn=on_mouse_move,
|
196 |
-
inputs=[frame_data],
|
197 |
-
outputs=[preview_frame, frame_info]
|
198 |
)
|
199 |
|
200 |
if __name__ == "__main__":
|
|
|
1 |
import gradio as gr
|
2 |
import cv2
|
3 |
import numpy as np
|
|
|
|
|
4 |
from framevis import FrameVis
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
def process_video(video_path, nframes, height, width, direction, trim, average, blur_amount):
|
7 |
+
"""Process video using FrameVis and return the visualization"""
|
8 |
try:
|
9 |
+
fv = FrameVis()
|
10 |
|
11 |
# Process the video
|
12 |
+
output_image = fv.visualize(
|
13 |
video_path,
|
14 |
nframes=nframes,
|
15 |
height=height if height > 0 else None,
|
|
|
27 |
|
28 |
# Convert from BGR to RGB for Gradio
|
29 |
output_image = cv2.cvtColor(output_image, cv2.COLOR_BGR2RGB)
|
30 |
+
return output_image
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
|
32 |
except Exception as e:
|
33 |
raise gr.Error(str(e))
|
34 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
# Create the Gradio interface
|
36 |
with gr.Blocks(title="FrameVis - Video Frame Visualizer") as demo:
|
37 |
gr.Markdown("""
|
38 |
# 🎬 FrameVis - Video Frame Visualizer
|
39 |
Upload a video to create a beautiful visualization of its frames. The tool will extract frames at regular intervals
|
40 |
+
and combine them into a single image.
|
41 |
""")
|
42 |
|
43 |
with gr.Row():
|
|
|
63 |
process_btn = gr.Button("Generate Visualization", variant="primary")
|
64 |
|
65 |
with gr.Column(scale=2):
|
66 |
+
# Output component
|
67 |
+
output_image = gr.Image(label="Visualization Result", height=300)
|
|
|
|
|
|
|
68 |
|
69 |
# Handle processing
|
70 |
+
process_btn.click(
|
71 |
fn=process_video,
|
72 |
inputs=[
|
73 |
video_input,
|
|
|
79 |
average,
|
80 |
blur_amount
|
81 |
],
|
82 |
+
outputs=output_image
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
)
|
84 |
|
85 |
if __name__ == "__main__":
|