Spaces:
Running
Running
from diffusers import DiffusionPipeline | |
import torch | |
import streamlit as st | |
# sdxl_base_model_path = ("../Models/models--stabilityai--stable-diffusion-xl-base-1.0/snapshots" | |
# "/462165984030d82259a11f4367a4eed129e94a7b") | |
# color_book_lora_path = "../Models/Loras/ColoringBookRedmond-ColoringBook-ColoringBookAF (1).safetensors" | |
color_book_lora_path ="artificialguybr/ColoringBookRedmond-V2" | |
color_book_trigger =", ColoringBookAF, Coloring Book" | |
def load_pipeline(lora): | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0", | |
torch_dtype=torch.float16 if device == "cuda" else torch.float32, | |
use_safetensors=True, | |
variant="fp16" if device =="cuda" else None) | |
# pipe = DiffusionPipeline.from_pretrained(sdxl_base_model_path, | |
# torch_dtype=torch.float16 if device == "cuda" else torch.float32, | |
# use_safetensors=True, | |
# variant="fp16" if device == "cuda" else None) | |
if lora != "None": | |
pipe.load_lora_weights(color_book_lora_path) | |
# if device == "cuda": | |
# pipe.to(device) | |
# else: | |
# pipe.enable_model_cpu_offload() | |
return pipe | |
def image_generation(pipe, prompt, negative_prompt): | |
try: | |
image = pipe( | |
prompt = prompt, | |
negative_prompt = "blurred, ugly, watermark, low resolution" + negative_prompt, | |
num_inference_steps= 20, | |
guidance_scale=9.0 | |
).images[0] | |
return image | |
except Exception as e: | |
st.error(f"Error generating image: {str(e)}") | |
return None | |
import streamlit as st | |
# Define the table as a list of dictionaries with the provided data | |
table = [ | |
{ | |
"name": "sai-neonpunk", | |
"prompt": "neonpunk style . cyberpunk, vaporwave, neon, vibes, vibrant, stunningly beautiful, crisp, detailed, sleek, ultramodern, magenta highlights, dark purple shadows, high contrast, cinematic, ultra detailed, intricate, professional", | |
"negative_prompt": "painting, drawing, illustration, glitch, deformed, mutated, cross-eyed, ugly, disfigured" | |
}, | |
{ | |
"name": "futuristic-retro cyberpunk", | |
"prompt": "retro cyberpunk. 80's inspired, synthwave, neon, vibrant, detailed, retro futurism", | |
"negative_prompt": "modern, desaturated, black and white, realism, low contrast" | |
}, | |
{ | |
"name": "Dark Fantasy", | |
"prompt": "Dark Fantasy Art, dark, moody, dark fantasy style", | |
"negative_prompt": "ugly, deformed, noisy, blurry, low contrast, bright, sunny" | |
}, | |
{ | |
"name": "Double Exposure", | |
"prompt": "Double Exposure Style, double image ghost effect, image combination, double exposure style", | |
"negative_prompt": "ugly, deformed, noisy, blurry, low contrast" | |
}, | |
{ | |
"name": "None", | |
"prompt": "8K ", | |
"negative_prompt": "painting, drawing, illustration, glitch, deformed, mutated, cross-eyed, ugly, disfigured" | |
} | |
] | |
# Convert the list of dictionaries to a dictionary with 'name' as key for easy lookup | |
styles_dict = {entry["name"]: entry for entry in table} | |
st.title("Project 12: @GenAILearniverse Coloring Book Generator") | |
prompt = st.text_input("Enter your Prompt", value="A cute Lion") | |
select_lora = st.selectbox("Select your lora", options=["Coloring Book", "None"]) | |
# Dropdown for selecting a style | |
style_name = st.selectbox("Select a Style", options=list(styles_dict.keys())) | |
# Display the selected style's prompt and negative prompt | |
if style_name: | |
selected_entry = styles_dict[style_name] | |
selected_style_prompt = selected_entry["prompt"]; | |
selected_style_negative_prompt = selected_entry["negative_prompt"] | |
if st.button("Generate Awesome Image"): | |
with st.spinner("Generating your awesome image..."): | |
pipeline = load_pipeline(select_lora) | |
if select_lora == "None": | |
image =image_generation(pipeline,prompt + selected_style_prompt, selected_style_negative_prompt) | |
else: | |
image = image_generation(pipeline, prompt + selected_style_prompt + color_book_trigger, selected_style_negative_prompt) | |
if image: | |
st.image(image) |