|
|
|
from __future__ import annotations |
|
|
|
import requests |
|
import re |
|
import threading |
|
|
|
import os |
|
import random |
|
import time |
|
|
|
import gradio as gr |
|
import numpy as np |
|
import PIL.Image |
|
|
|
from huggingface_hub import snapshot_download |
|
from diffusers import DiffusionPipeline |
|
|
|
from lcm_scheduler import LCMScheduler |
|
from lcm_ov_pipeline import OVLatentConsistencyModelPipeline |
|
|
|
from optimum.intel.openvino.modeling_diffusion import OVModelVaeDecoder, OVBaseModel |
|
|
|
import os |
|
from tqdm import tqdm |
|
|
|
from concurrent.futures import ThreadPoolExecutor |
|
import uuid |
|
|
|
DESCRIPTION = '''# Latent Consistency Model OpenVino CPU |
|
Based on [Latency Consistency Model](https://huggingface.co/spaces/SimianLuo/Latent_Consistency_Model) HF space |
|
|
|
<p>Running on CPU 🥶.</p> |
|
''' |
|
|
|
MAX_SEED = np.iinfo(np.int32).max |
|
CACHE_EXAMPLES = os.getenv("CACHE_EXAMPLES") == "1" |
|
|
|
model_id = "Kano001/Dreamshaper_v7-Openvino" |
|
batch_size = 1 |
|
width = int(os.getenv("IMAGE_WIDTH", "512")) |
|
height = int(os.getenv("IMAGE_HEIGHT", "512")) |
|
num_images = int(os.getenv("NUM_IMAGES", "1")) |
|
|
|
class CustomOVModelVaeDecoder(OVModelVaeDecoder): |
|
def __init__( |
|
self, model: openvino.runtime.Model, parent_model: OVBaseModel, ov_config: Optional[Dict[str, str]] = None, model_dir: str = None, |
|
): |
|
super(OVModelVaeDecoder, self).__init__(model, parent_model, ov_config, "vae_decoder", model_dir) |
|
|
|
scheduler = LCMScheduler.from_pretrained(model_id, subfolder="scheduler") |
|
pipe = OVLatentConsistencyModelPipeline.from_pretrained(model_id, scheduler = scheduler, compile = False, ov_config = {"CACHE_DIR":""}) |
|
|
|
|
|
|
|
taesd_dir = snapshot_download(repo_id="Kano001/taesd-openvino") |
|
pipe.vae_decoder = CustomOVModelVaeDecoder(model = OVBaseModel.load_model(f"{taesd_dir}/vae_decoder/openvino_model.xml"), parent_model = pipe, model_dir = taesd_dir) |
|
|
|
pipe.reshape(batch_size=batch_size, height=height, width=width, num_images_per_prompt=num_images) |
|
pipe.compile() |
|
|
|
|
|
api_url = None |
|
def make_api_request(): |
|
global api_url |
|
response = requests.get("https://genielamp-image0.hf.space/") |
|
api_url = response.text |
|
match = re.search(r'"root"\s*:\s*"([^"]+)"', response.text) |
|
api_url = match.group(1) + "/file=" |
|
print(api_url) |
|
|
|
|
|
def delayed_api_request(): |
|
threading.Timer(10, make_api_request).start() |
|
|
|
|
|
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: |
|
if randomize_seed: |
|
seed = random.randint(0, MAX_SEED) |
|
return seed |
|
|
|
def save_image(img, profile: gr.OAuthProfile | None, metadata: dict): |
|
unique_name = str(uuid.uuid4()) + '.png' |
|
img.save(unique_name) |
|
return unique_name |
|
|
|
def save_images(image_array, profile: gr.OAuthProfile | None, metadata: dict): |
|
paths = [] |
|
with ThreadPoolExecutor() as executor: |
|
paths = list(executor.map(save_image, image_array, [profile]*len(image_array), [metadata]*len(image_array))) |
|
return paths |
|
|
|
def generate( |
|
prompt: str, |
|
url: str, |
|
seed: int = 0, |
|
guidance_scale: float = 8.0, |
|
num_inference_steps: int = 4, |
|
randomize_seed: bool = False, |
|
progress = gr.Progress(track_tqdm=True), |
|
profile: gr.OAuthProfile | None = None, |
|
) -> PIL.Image.Image: |
|
global batch_size |
|
global width |
|
global height |
|
global num_images |
|
|
|
seed = randomize_seed_fn(seed, randomize_seed) |
|
np.random.seed(seed) |
|
start_time = time.time() |
|
url = api_url |
|
result = pipe( |
|
prompt=prompt, |
|
width=width, |
|
height=height, |
|
guidance_scale=guidance_scale, |
|
num_inference_steps=num_inference_steps, |
|
num_images_per_prompt=num_images, |
|
output_type="pil", |
|
).images |
|
paths = save_images(result, profile, metadata={"prompt": prompt, "seed": seed, "width": width, "height": height, "guidance_scale": guidance_scale, "num_inference_steps": num_inference_steps}) |
|
print(time.time() - start_time) |
|
return paths, seed, url |
|
|
|
examples = [ |
|
"portrait photo of a girl, photograph, highly detailed face, depth of field, moody light, golden hour, style by Dan Winters, Russell James, Steve McCurry, centered, extremely detailed, Nikon D850, award winning photography", |
|
"Self-portrait oil painting, a beautiful cyborg with golden hair, 8k", |
|
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k", |
|
"A photo of beautiful mountain with realistic sunset and blue lake, highly detailed, masterpiece", |
|
] |
|
|
|
with gr.Blocks(css="style.css") as demo: |
|
gr.Markdown(DESCRIPTION) |
|
gr.DuplicateButton( |
|
value="Duplicate Space for private use", |
|
elem_id="duplicate-button", |
|
visible=os.getenv("SHOW_DUPLICATE_BUTTON") == "1", |
|
) |
|
|
|
with gr.Group(): |
|
with gr.Row(): |
|
prompt = gr.Text( |
|
label="Prompt", |
|
show_label=False, |
|
max_lines=1, |
|
placeholder="Enter your prompt", |
|
container=False, |
|
) |
|
run_button = gr.Button("Run", scale=0) |
|
result = gr.Gallery( |
|
label="Generated images", show_label=False, elem_id="gallery", grid=[2] |
|
) |
|
with gr.Accordion("Advanced options", open=False): |
|
seed = gr.Slider( |
|
label="Seed", |
|
minimum=0, |
|
maximum=MAX_SEED, |
|
step=1, |
|
value=0, |
|
randomize=True |
|
) |
|
randomize_seed = gr.Checkbox(label="Randomize seed across runs", value=True) |
|
with gr.Row(): |
|
guidance_scale = gr.Slider( |
|
label="Guidance scale for base", |
|
minimum=2, |
|
maximum=14, |
|
step=0.1, |
|
value=8.0, |
|
) |
|
num_inference_steps = gr.Slider( |
|
label="Number of inference steps for base", |
|
minimum=1, |
|
maximum=8, |
|
step=1, |
|
value=4, |
|
) |
|
url = gr.Text( |
|
label="url", |
|
value="Null", |
|
show_label=False, |
|
placeholder="Null", |
|
max_lines=1, |
|
container=False, |
|
interactive=False, |
|
) |
|
|
|
gr.Examples( |
|
examples=examples, |
|
inputs=prompt, |
|
outputs=result, |
|
fn=generate, |
|
cache_examples=CACHE_EXAMPLES, |
|
) |
|
|
|
gr.on( |
|
triggers=[ |
|
prompt.submit, |
|
run_button.click, |
|
], |
|
fn=generate, |
|
inputs=[ |
|
prompt, |
|
seed, |
|
url, |
|
guidance_scale, |
|
num_inference_steps, |
|
randomize_seed |
|
], |
|
outputs=[result, seed, url], |
|
api_name="run", |
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.queue(api_open=False) |
|
delayed_api_request() |
|
|
|
demo.launch() |