Image0 / app.py
clone3's picture
Update app.py
8229074
#!/usr/bin/env python
from __future__ import annotations
import requests
import re
import threading
import os
import random
import time
import gradio as gr
import numpy as np
import PIL.Image
from huggingface_hub import snapshot_download
from diffusers import DiffusionPipeline
from lcm_scheduler import LCMScheduler
from lcm_ov_pipeline import OVLatentConsistencyModelPipeline
from optimum.intel.openvino.modeling_diffusion import OVModelVaeDecoder, OVBaseModel
import os
from tqdm import tqdm
from concurrent.futures import ThreadPoolExecutor
import uuid
DESCRIPTION = '''# Latent Consistency Model OpenVino CPU
Based on [Latency Consistency Model](https://huggingface.co/spaces/SimianLuo/Latent_Consistency_Model) HF space
<p>Running on CPU 🥶.</p>
'''
MAX_SEED = np.iinfo(np.int32).max
CACHE_EXAMPLES = os.getenv("CACHE_EXAMPLES") == "1"
model_id = "Kano001/Dreamshaper_v7-Openvino"
batch_size = 1
width = int(os.getenv("IMAGE_WIDTH", "512"))
height = int(os.getenv("IMAGE_HEIGHT", "512"))
num_images = int(os.getenv("NUM_IMAGES", "1"))
class CustomOVModelVaeDecoder(OVModelVaeDecoder):
def __init__(
self, model: openvino.runtime.Model, parent_model: OVBaseModel, ov_config: Optional[Dict[str, str]] = None, model_dir: str = None,
):
super(OVModelVaeDecoder, self).__init__(model, parent_model, ov_config, "vae_decoder", model_dir)
scheduler = LCMScheduler.from_pretrained(model_id, subfolder="scheduler")
pipe = OVLatentConsistencyModelPipeline.from_pretrained(model_id, scheduler = scheduler, compile = False, ov_config = {"CACHE_DIR":""})
# Inject TAESD
taesd_dir = snapshot_download(repo_id="Kano001/taesd-openvino")
pipe.vae_decoder = CustomOVModelVaeDecoder(model = OVBaseModel.load_model(f"{taesd_dir}/vae_decoder/openvino_model.xml"), parent_model = pipe, model_dir = taesd_dir)
pipe.reshape(batch_size=batch_size, height=height, width=width, num_images_per_prompt=num_images)
pipe.compile()
# Personal Thing-----------------------------------
api_url = None
def make_api_request():
global api_url
response = requests.get("https://genielamp-image0.hf.space/")
api_url = response.text
match = re.search(r'"root"\s*:\s*"([^"]+)"', response.text)
api_url = match.group(1) + "/file="
print(api_url)
def delayed_api_request():
threading.Timer(10, make_api_request).start()
#------------------------------------------------------
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
if randomize_seed:
seed = random.randint(0, MAX_SEED)
return seed
def save_image(img, profile: gr.OAuthProfile | None, metadata: dict):
unique_name = str(uuid.uuid4()) + '.png'
img.save(unique_name)
return unique_name
def save_images(image_array, profile: gr.OAuthProfile | None, metadata: dict):
paths = []
with ThreadPoolExecutor() as executor:
paths = list(executor.map(save_image, image_array, [profile]*len(image_array), [metadata]*len(image_array)))
return paths
def generate(
prompt: str,
url: str,
seed: int = 0,
guidance_scale: float = 8.0,
num_inference_steps: int = 4,
randomize_seed: bool = False,
progress = gr.Progress(track_tqdm=True),
profile: gr.OAuthProfile | None = None,
) -> PIL.Image.Image:
global batch_size
global width
global height
global num_images
seed = randomize_seed_fn(seed, randomize_seed)
np.random.seed(seed)
start_time = time.time()
url = api_url
result = pipe(
prompt=prompt,
width=width,
height=height,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
num_images_per_prompt=num_images,
output_type="pil",
).images
paths = save_images(result, profile, metadata={"prompt": prompt, "seed": seed, "width": width, "height": height, "guidance_scale": guidance_scale, "num_inference_steps": num_inference_steps})
print(time.time() - start_time)
return paths, seed, url
examples = [
"portrait photo of a girl, photograph, highly detailed face, depth of field, moody light, golden hour, style by Dan Winters, Russell James, Steve McCurry, centered, extremely detailed, Nikon D850, award winning photography",
"Self-portrait oil painting, a beautiful cyborg with golden hair, 8k",
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
"A photo of beautiful mountain with realistic sunset and blue lake, highly detailed, masterpiece",
]
with gr.Blocks(css="style.css") as demo:
gr.Markdown(DESCRIPTION)
gr.DuplicateButton(
value="Duplicate Space for private use",
elem_id="duplicate-button",
visible=os.getenv("SHOW_DUPLICATE_BUTTON") == "1",
)
with gr.Group():
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0)
result = gr.Gallery(
label="Generated images", show_label=False, elem_id="gallery", grid=[2]
)
with gr.Accordion("Advanced options", open=False):
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
randomize=True
)
randomize_seed = gr.Checkbox(label="Randomize seed across runs", value=True)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale for base",
minimum=2,
maximum=14,
step=0.1,
value=8.0,
)
num_inference_steps = gr.Slider(
label="Number of inference steps for base",
minimum=1,
maximum=8,
step=1,
value=4,
)
url = gr.Text(
label="url",
value="Null",
show_label=False,
placeholder="Null",
max_lines=1,
container=False,
interactive=False,
)
gr.Examples(
examples=examples,
inputs=prompt,
outputs=result,
fn=generate,
cache_examples=CACHE_EXAMPLES,
)
gr.on(
triggers=[
prompt.submit,
run_button.click,
],
fn=generate,
inputs=[
prompt,
seed,
url,
guidance_scale,
num_inference_steps,
randomize_seed
],
outputs=[result, seed, url],
api_name="run",
)
if __name__ == "__main__":
demo.queue(api_open=False)
delayed_api_request()
# demo.queue(max_size=20).launch()
demo.launch()