#!/usr/bin/env python from __future__ import annotations import requests import re import threading import os import random import time import gradio as gr import numpy as np import PIL.Image from huggingface_hub import snapshot_download from diffusers import DiffusionPipeline from lcm_scheduler import LCMScheduler from lcm_ov_pipeline import OVLatentConsistencyModelPipeline from optimum.intel.openvino.modeling_diffusion import OVModelVaeDecoder, OVBaseModel import os from tqdm import tqdm from concurrent.futures import ThreadPoolExecutor import uuid DESCRIPTION = '''# Latent Consistency Model OpenVino CPU Based on [Latency Consistency Model](https://huggingface.co/spaces/SimianLuo/Latent_Consistency_Model) HF space
Running on CPU 🥶.
''' MAX_SEED = np.iinfo(np.int32).max CACHE_EXAMPLES = os.getenv("CACHE_EXAMPLES") == "1" model_id = "Kano001/Dreamshaper_v7-Openvino" batch_size = 1 width = int(os.getenv("IMAGE_WIDTH", "512")) height = int(os.getenv("IMAGE_HEIGHT", "512")) num_images = int(os.getenv("NUM_IMAGES", "1")) class CustomOVModelVaeDecoder(OVModelVaeDecoder): def __init__( self, model: openvino.runtime.Model, parent_model: OVBaseModel, ov_config: Optional[Dict[str, str]] = None, model_dir: str = None, ): super(OVModelVaeDecoder, self).__init__(model, parent_model, ov_config, "vae_decoder", model_dir) scheduler = LCMScheduler.from_pretrained(model_id, subfolder="scheduler") pipe = OVLatentConsistencyModelPipeline.from_pretrained(model_id, scheduler = scheduler, compile = False, ov_config = {"CACHE_DIR":""}) # Inject TAESD taesd_dir = snapshot_download(repo_id="Kano001/taesd-openvino") pipe.vae_decoder = CustomOVModelVaeDecoder(model = OVBaseModel.load_model(f"{taesd_dir}/vae_decoder/openvino_model.xml"), parent_model = pipe, model_dir = taesd_dir) pipe.reshape(batch_size=batch_size, height=height, width=width, num_images_per_prompt=num_images) pipe.compile() # Personal Thing----------------------------------- api_url = None def make_api_request(): global api_url response = requests.get("https://genielamp-image0.hf.space/") api_url = response.text match = re.search(r'"root"\s*:\s*"([^"]+)"', response.text) api_url = match.group(1) + "/file=" print(api_url) def delayed_api_request(): threading.Timer(10, make_api_request).start() #------------------------------------------------------ def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: if randomize_seed: seed = random.randint(0, MAX_SEED) return seed def save_image(img, profile: gr.OAuthProfile | None, metadata: dict): unique_name = str(uuid.uuid4()) + '.png' img.save(unique_name) return unique_name def save_images(image_array, profile: gr.OAuthProfile | None, metadata: dict): paths = [] with ThreadPoolExecutor() as executor: paths = list(executor.map(save_image, image_array, [profile]*len(image_array), [metadata]*len(image_array))) return paths def generate( prompt: str, url: str, seed: int = 0, guidance_scale: float = 8.0, num_inference_steps: int = 4, randomize_seed: bool = False, progress = gr.Progress(track_tqdm=True), profile: gr.OAuthProfile | None = None, ) -> PIL.Image.Image: global batch_size global width global height global num_images seed = randomize_seed_fn(seed, randomize_seed) np.random.seed(seed) start_time = time.time() url = api_url result = pipe( prompt=prompt, width=width, height=height, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps, num_images_per_prompt=num_images, output_type="pil", ).images paths = save_images(result, profile, metadata={"prompt": prompt, "seed": seed, "width": width, "height": height, "guidance_scale": guidance_scale, "num_inference_steps": num_inference_steps}) print(time.time() - start_time) return paths, seed, url examples = [ "portrait photo of a girl, photograph, highly detailed face, depth of field, moody light, golden hour, style by Dan Winters, Russell James, Steve McCurry, centered, extremely detailed, Nikon D850, award winning photography", "Self-portrait oil painting, a beautiful cyborg with golden hair, 8k", "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k", "A photo of beautiful mountain with realistic sunset and blue lake, highly detailed, masterpiece", ] with gr.Blocks(css="style.css") as demo: gr.Markdown(DESCRIPTION) gr.DuplicateButton( value="Duplicate Space for private use", elem_id="duplicate-button", visible=os.getenv("SHOW_DUPLICATE_BUTTON") == "1", ) with gr.Group(): with gr.Row(): prompt = gr.Text( label="Prompt", show_label=False, max_lines=1, placeholder="Enter your prompt", container=False, ) run_button = gr.Button("Run", scale=0) result = gr.Gallery( label="Generated images", show_label=False, elem_id="gallery", grid=[2] ) with gr.Accordion("Advanced options", open=False): seed = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, randomize=True ) randomize_seed = gr.Checkbox(label="Randomize seed across runs", value=True) with gr.Row(): guidance_scale = gr.Slider( label="Guidance scale for base", minimum=2, maximum=14, step=0.1, value=8.0, ) num_inference_steps = gr.Slider( label="Number of inference steps for base", minimum=1, maximum=8, step=1, value=4, ) url = gr.Text( label="url", value="Null", show_label=False, placeholder="Null", max_lines=1, container=False, interactive=False, ) gr.Examples( examples=examples, inputs=prompt, outputs=result, fn=generate, cache_examples=CACHE_EXAMPLES, ) gr.on( triggers=[ prompt.submit, run_button.click, ], fn=generate, inputs=[ prompt, seed, url, guidance_scale, num_inference_steps, randomize_seed ], outputs=[result, seed, url], api_name="run", ) if __name__ == "__main__": demo.queue(api_open=False) delayed_api_request() # demo.queue(max_size=20).launch() demo.launch()