File size: 18,519 Bytes
607d357 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 |
import inspect
from pathlib import Path
from tempfile import TemporaryDirectory
from typing import List, Optional, Tuple, Union, Dict, Any, Callable, OrderedDict
import numpy as np
import openvino
import torch
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
from optimum.intel.openvino.modeling_diffusion import OVStableDiffusionPipeline, OVModelUnet, OVModelVaeDecoder, OVModelTextEncoder, OVModelVaeEncoder, VaeImageProcessor
from optimum.utils import (
DIFFUSION_MODEL_TEXT_ENCODER_2_SUBFOLDER,
DIFFUSION_MODEL_TEXT_ENCODER_SUBFOLDER,
DIFFUSION_MODEL_UNET_SUBFOLDER,
DIFFUSION_MODEL_VAE_DECODER_SUBFOLDER,
DIFFUSION_MODEL_VAE_ENCODER_SUBFOLDER,
)
from diffusers import logging
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
class LCMOVModelUnet(OVModelUnet):
def __call__(
self,
sample: np.ndarray,
timestep: np.ndarray,
encoder_hidden_states: np.ndarray,
timestep_cond: Optional[np.ndarray] = None,
text_embeds: Optional[np.ndarray] = None,
time_ids: Optional[np.ndarray] = None,
):
self._compile()
inputs = {
"sample": sample,
"timestep": timestep,
"encoder_hidden_states": encoder_hidden_states,
}
if timestep_cond is not None:
inputs["timestep_cond"] = timestep_cond
if text_embeds is not None:
inputs["text_embeds"] = text_embeds
if time_ids is not None:
inputs["time_ids"] = time_ids
outputs = self.request(inputs, shared_memory=True)
return list(outputs.values())
class OVLatentConsistencyModelPipeline(OVStableDiffusionPipeline):
def __init__(
self,
vae_decoder: openvino.runtime.Model,
text_encoder: openvino.runtime.Model,
unet: openvino.runtime.Model,
config: Dict[str, Any],
tokenizer: "CLIPTokenizer",
scheduler: Union["DDIMScheduler", "PNDMScheduler", "LMSDiscreteScheduler"],
feature_extractor: Optional["CLIPFeatureExtractor"] = None,
vae_encoder: Optional[openvino.runtime.Model] = None,
text_encoder_2: Optional[openvino.runtime.Model] = None,
tokenizer_2: Optional["CLIPTokenizer"] = None,
device: str = "CPU",
dynamic_shapes: bool = True,
compile: bool = True,
ov_config: Optional[Dict[str, str]] = None,
model_save_dir: Optional[Union[str, Path, TemporaryDirectory]] = None,
**kwargs,
):
self._internal_dict = config
self._device = device.upper()
self.is_dynamic = dynamic_shapes
self.ov_config = ov_config if ov_config is not None else {}
self._model_save_dir = (
Path(model_save_dir.name) if isinstance(model_save_dir, TemporaryDirectory) else model_save_dir
)
self.vae_decoder = OVModelVaeDecoder(vae_decoder, self)
self.unet = LCMOVModelUnet(unet, self)
self.text_encoder = OVModelTextEncoder(text_encoder, self) if text_encoder is not None else None
self.text_encoder_2 = (
OVModelTextEncoder(text_encoder_2, self, model_name=DIFFUSION_MODEL_TEXT_ENCODER_2_SUBFOLDER)
if text_encoder_2 is not None
else None
)
self.vae_encoder = OVModelVaeEncoder(vae_encoder, self) if vae_encoder is not None else None
if "block_out_channels" in self.vae_decoder.config:
self.vae_scale_factor = 2 ** (len(self.vae_decoder.config["block_out_channels"]) - 1)
else:
self.vae_scale_factor = 8
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
self.tokenizer = tokenizer
self.tokenizer_2 = tokenizer_2
self.scheduler = scheduler
self.feature_extractor = feature_extractor
self.safety_checker = None
self.preprocessors = []
if self.is_dynamic:
self.reshape(batch_size=-1, height=-1, width=-1, num_images_per_prompt=-1)
if compile:
self.compile()
sub_models = {
DIFFUSION_MODEL_TEXT_ENCODER_SUBFOLDER: self.text_encoder,
DIFFUSION_MODEL_UNET_SUBFOLDER: self.unet,
DIFFUSION_MODEL_VAE_DECODER_SUBFOLDER: self.vae_decoder,
DIFFUSION_MODEL_VAE_ENCODER_SUBFOLDER: self.vae_encoder,
DIFFUSION_MODEL_TEXT_ENCODER_2_SUBFOLDER: self.text_encoder_2,
}
for name in sub_models.keys():
self._internal_dict[name] = (
("optimum", sub_models[name].__class__.__name__) if sub_models[name] is not None else (None, None)
)
self._internal_dict.pop("vae", None)
def _reshape_unet(
self,
model: openvino.runtime.Model,
batch_size: int = -1,
height: int = -1,
width: int = -1,
num_images_per_prompt: int = -1,
tokenizer_max_length: int = -1,
):
if batch_size == -1 or num_images_per_prompt == -1:
batch_size = -1
else:
batch_size = batch_size * num_images_per_prompt
height = height // self.vae_scale_factor if height > 0 else height
width = width // self.vae_scale_factor if width > 0 else width
shapes = {}
for inputs in model.inputs:
shapes[inputs] = inputs.get_partial_shape()
if inputs.get_any_name() == "timestep":
shapes[inputs][0] = 1
elif inputs.get_any_name() == "sample":
in_channels = self.unet.config.get("in_channels", None)
if in_channels is None:
in_channels = shapes[inputs][1]
if in_channels.is_dynamic:
logger.warning(
"Could not identify `in_channels` from the unet configuration, to statically reshape the unet please provide a configuration."
)
self.is_dynamic = True
shapes[inputs] = [batch_size, in_channels, height, width]
elif inputs.get_any_name() == "timestep_cond":
shapes[inputs] = [batch_size, inputs.get_partial_shape()[1]]
elif inputs.get_any_name() == "text_embeds":
shapes[inputs] = [batch_size, self.text_encoder_2.config["projection_dim"]]
elif inputs.get_any_name() == "time_ids":
shapes[inputs] = [batch_size, inputs.get_partial_shape()[1]]
else:
shapes[inputs][0] = batch_size
shapes[inputs][1] = tokenizer_max_length
model.reshape(shapes)
return model
def get_guidance_scale_embedding(self, w, embedding_dim=512, dtype=np.float32):
"""
see https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298
Args:
timesteps: np.array: generate embedding vectors at these timesteps
embedding_dim: int: dimension of the embeddings to generate
dtype: data type of the generated embeddings
Returns:
embedding vectors with shape `(len(timesteps), embedding_dim)`
"""
assert len(w.shape) == 1
w = w * 1000.
half_dim = embedding_dim // 2
emb = np.log(np.array(10000.)) / (half_dim - 1)
emb = np.exp(np.arange(half_dim, dtype=dtype) * -emb)
emb = w.astype(dtype)[:, None] * emb[None, :]
emb = np.concatenate([np.sin(emb), np.cos(emb)], axis=1)
if embedding_dim % 2 == 1: # zero pad
emb = np.pad(emb, (0, 1))
assert emb.shape == (w.shape[0], embedding_dim)
return emb
# Adapted from https://github.com/huggingface/optimum/blob/15b8d1eed4d83c5004d3b60f6b6f13744b358f01/optimum/pipelines/diffusers/pipeline_stable_diffusion.py#L201
def __call__(
self,
prompt: Optional[Union[str, List[str]]] = None,
height: Optional[int] = None,
width: Optional[int] = None,
num_inference_steps: int = 4,
original_inference_steps: int = None,
guidance_scale: float = 7.5,
num_images_per_prompt: int = 1,
eta: float = 0.0,
generator: Optional[np.random.RandomState] = None,
latents: Optional[np.ndarray] = None,
prompt_embeds: Optional[np.ndarray] = None,
output_type: str = "pil",
return_dict: bool = True,
callback: Optional[Callable[[int, int, np.ndarray], None]] = None,
callback_steps: int = 1,
guidance_rescale: float = 0.0,
):
r"""
Function invoked when calling the pipeline for generation.
Args:
prompt (`Optional[Union[str, List[str]]]`, defaults to None):
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
instead.
height (`Optional[int]`, defaults to None):
The height in pixels of the generated image.
width (`Optional[int]`, defaults to None):
The width in pixels of the generated image.
num_inference_steps (`int`, defaults to 4):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference.
original_inference_steps (`int`, *optional*):
The original number of inference steps use to generate a linearly-spaced timestep schedule, from which
we will draw `num_inference_steps` evenly spaced timesteps from as our final timestep schedule,
following the Skipping-Step method in the paper (see Section 4.3). If not set this will default to the
scheduler's `original_inference_steps` attribute.
guidance_scale (`float`, defaults to 7.5):
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
`guidance_scale` is defined as `w` of equation 2. of [Imagen
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
usually at the expense of lower image quality.
num_images_per_prompt (`int`, defaults to 1):
The number of images to generate per prompt.
eta (`float`, defaults to 0.0):
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
[`schedulers.DDIMScheduler`], will be ignored for others.
generator (`Optional[np.random.RandomState]`, defaults to `None`)::
A np.random.RandomState to make generation deterministic.
latents (`Optional[np.ndarray]`, defaults to `None`):
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will ge generated by sampling using the supplied random `generator`.
prompt_embeds (`Optional[np.ndarray]`, defaults to `None`):
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
provided, text embeddings will be generated from `prompt` input argument.
output_type (`str`, defaults to `"pil"`):
The output format of the generate image. Choose between
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
return_dict (`bool`, defaults to `True`):
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
plain tuple.
callback (Optional[Callable], defaults to `None`):
A function that will be called every `callback_steps` steps during inference. The function will be
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
callback_steps (`int`, defaults to 1):
The frequency at which the `callback` function will be called. If not specified, the callback will be
called at every step.
guidance_rescale (`float`, defaults to 0.0):
Guidance rescale factor proposed by [Common Diffusion Noise Schedules and Sample Steps are
Flawed](https://arxiv.org/pdf/2305.08891.pdf) `guidance_scale` is defined as `φ` in equation 16. of
[Common Diffusion Noise Schedules and Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf).
Guidance rescale factor should fix overexposure when using zero terminal SNR.
Returns:
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
When returning a tuple, the first element is a list with the generated images, and the second element is a
list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
(nsfw) content, according to the `safety_checker`.
"""
height = height or self.unet.config.get("sample_size", 64) * self.vae_scale_factor
width = width or self.unet.config.get("sample_size", 64) * self.vae_scale_factor
# check inputs. Raise error if not correct
self.check_inputs(
prompt, height, width, callback_steps, None, prompt_embeds, None
)
# define call parameters
if isinstance(prompt, str):
batch_size = 1
elif isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
if generator is None:
generator = np.random
# Create torch.Generator instance with same state as np.random.RandomState
torch_generator = torch.Generator().manual_seed(int(generator.get_state()[1][0]))
#do_classifier_free_guidance = guidance_scale > 1.0
# NOTE: when a LCM is distilled from an LDM via latent consistency distillation (Algorithm 1) with guided
# distillation, the forward pass of the LCM learns to approximate sampling from the LDM using CFG with the
# unconditional prompt "" (the empty string). Due to this, LCMs currently do not support negative prompts.
prompt_embeds = self._encode_prompt(
prompt,
num_images_per_prompt,
False,
negative_prompt=None,
prompt_embeds=prompt_embeds,
negative_prompt_embeds=None,
)
# set timesteps
self.scheduler.set_timesteps(num_inference_steps, "cpu", original_inference_steps=original_inference_steps)
timesteps = self.scheduler.timesteps
latents = self.prepare_latents(
batch_size * num_images_per_prompt,
self.unet.config.get("in_channels", 4),
height,
width,
prompt_embeds.dtype,
generator,
latents,
)
# Get Guidance Scale Embedding
w = np.tile(guidance_scale - 1, batch_size * num_images_per_prompt)
w_embedding = self.get_guidance_scale_embedding(w, embedding_dim=self.unet.config.get("time_cond_proj_dim", 256))
# Adapted from diffusers to extend it for other runtimes than ORT
timestep_dtype = self.unet.input_dtype.get("timestep", np.float32)
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
# and should be between [0, 1]
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
extra_step_kwargs = {}
if accepts_eta:
extra_step_kwargs["eta"] = eta
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
if accepts_generator:
extra_step_kwargs["generator"] = torch_generator
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
for i, t in enumerate(self.progress_bar(timesteps)):
# predict the noise residual
timestep = np.array([t], dtype=timestep_dtype)
noise_pred = self.unet(sample=latents, timestep=timestep, timestep_cond = w_embedding, encoder_hidden_states=prompt_embeds)[0]
# compute the previous noisy sample x_t -> x_t-1
latents, denoised = self.scheduler.step(
torch.from_numpy(noise_pred), t, torch.from_numpy(latents), **extra_step_kwargs, return_dict = False
)
latents, denoised = latents.numpy(), denoised.numpy()
# call the callback, if provided
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
if callback is not None and i % callback_steps == 0:
callback(i, t, latents)
if output_type == "latent":
image = latents
has_nsfw_concept = None
else:
denoised /= self.vae_decoder.config.get("scaling_factor", 0.18215)
# it seems likes there is a strange result for using half-precision vae decoder if batchsize>1
image = np.concatenate(
[self.vae_decoder(latent_sample=denoised[i : i + 1])[0] for i in range(latents.shape[0])]
)
image, has_nsfw_concept = self.run_safety_checker(image)
if has_nsfw_concept is None:
do_denormalize = [True] * image.shape[0]
else:
do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept]
image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize)
if not return_dict:
return (image, has_nsfw_concept)
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
|