geonmo.gu
add demo
3d1d83f
raw
history blame
2.6 kB
import os
import torch
import gradio as gr
import time
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
from flores200_codes import flores_codes
def load_models():
# build model and tokenizer
model_name_dict = {'nllb-distilled-600M': 'facebook/nllb-200-distilled-600M',
'nllb-1.3B': 'facebook/nllb-200-1.3B',
'nllb-distilled-1.3B': 'facebook/nllb-200-distilled-1.3B',
#'nllb-3.3B': 'facebook/nllb-200-3.3B',
}
model_dict = {}
for call_name, real_name in model_name_dict.items():
print('\tLoading model: %s' % call_name)
model = AutoModelForSeq2SeqLM.from_pretrained(real_name)
tokenizer = AutoTokenizer.from_pretrained(real_name)
model_dict[call_name+'_model'] = model
model_dict[call_name+'_tokenizer'] = tokenizer
return model_dict
def translation(model_name, source, target, text):
start_time = time.time()
source = flores_codes[source]
target = flores_codes[target]
model = model_dict[model_name + '_model']
tokenizer = model_dict[model_name + '_tokenizer']
translator = pipeline('translation', model=model, tokenizer=tokenizer, src_lang=source, tgt_lang=target)
output = translator(text, max_length=400)
end_time = time.time()
output = output[0]['translation_text']
result = {'inference_time': end_time - start_time,
'source': source,
'target': target,
'result': output}
return result
if __name__ == '__main__':
print('\tinit models')
global model_dict
model_dict = load_models()
# define gradio demo
lang_codes = list(flores_codes.keys())
inputs = [gr.inputs.Radio(['nllb-distilled-600M', 'nllb-1.3B', 'nllb-distilled-1.3B'], label='NLLB Model'),
gr.inputs.Dropdown(lang_codes, label='Source'),
gr.inputs.Dropdown(lang_codes, label='Target'),
gr.inputs.Textbox(lines=5, label="Input text"),
]
outputs = gr.outputs.JSON()
title = "NLLB demo"
demo_status = "Demo is running on CPU"
description = f"Details: https://github.com/facebookresearch/fairseq/tree/nllb. {demo_status}"
examples = [
['nllb-distilled-600M', 'English', 'Korean', 'Hi. nice to meet you']
]
gr.Interface(translation,
inputs,
outputs,
title=title,
description=description,
examples=examples,
examples_per_page=50,
).launch()