############################################################################################################################# | |
# Filename : app.py | |
# Description: A Streamlit application to turn an image to audio story. | |
# Author : Georgios Ioannou | |
# | |
# Copyright © 2024 by Georgios Ioannou | |
############################################################################################################################# | |
# Import libraries. | |
import os # Load environment variable(s). | |
import requests # Send HTTP GET request to Hugging Face models for inference. | |
import streamlit as st # Build the GUI of the application. | |
from langchain.chat_models import ChatOpenAI # Access to OpenAI gpt-3.5-turbo model. | |
from langchain.chains import LLMChain # Chain to run queries against LLMs. | |
# A prompt template. It accepts a set of parameters from the user that can be used to generate a prompt for a language model. | |
from langchain.prompts import PromptTemplate | |
from transformers import pipeline # Access to Hugging Face models. | |
############################################################################################################################# | |
# Load environment variable(s). | |
HUGGINGFACEHUB_API_TOKEN = os.getenv("HUGGINGFACEHUB_API_TOKEN") | |
############################################################################################################################# | |
# Function to apply local CSS. | |
def local_css(file_name): | |
with open(file_name) as f: | |
st.markdown(f"<style>{f.read()}</style>", unsafe_allow_html=True) | |
############################################################################################################################# | |
# Return the text generated by the model for the image. | |
# Using pipeline. | |
def img_to_text(image_path): | |
# https://huggingface.co/tasks | |
# Task used here : "image-to-text". | |
# Model used here: "Salesforce/blip-image-captioning-base". | |
# Backup model: "nlpconnect/vit-gpt2-image-captioning". | |
image_to_text = pipeline( | |
"image-to-text", model="Salesforce/blip-image-captioning-base" | |
) | |
# image_to_text = pipeline("image-to-text", model="nlpconnect/vit-gpt2-image-captioning") | |
scenario = image_to_text(image_path)[0]["generated_text"] | |
return scenario | |
############################################################################################################################# | |
# Return the story generated by the model for the scenario. | |
# Using Langchain. | |
def generate_story(scenario, personality): | |
# Model used here: "gpt-3.5-turbo". | |
# The template can be customized to meet one's needs such as: | |
# Generate a story and generate lyrics of a song. | |
template = """ | |
You are a story teller. | |
You must sound like {personality}. | |
The story should be less than 50 words. | |
Generate a story based on the above constraints and the following scenario: {scenario}. | |
""" | |
prompt = PromptTemplate( | |
template=template, input_variables=["scenario", "personality"] | |
) | |
story_llm = LLMChain( | |
llm=ChatOpenAI( | |
model_name="gpt-3.5-turbo", temperature=0 | |
), # Increasing the temperature, the model becomes more creative and takes longer for inference. | |
prompt=prompt, | |
verbose=True, # Print intermediate values to the console. | |
) | |
story = story_llm.predict( | |
scenario=scenario, personality=personality | |
) # Format prompt with kwargs and pass to LLM. | |
return story | |
############################################################################################################################# | |
# Return the speech generated by the model for the story. | |
# Using inference api. | |
def text_to_speech(story): | |
# Model used here: "espnet/kan-bayashi_ljspeech_vits. | |
# Backup model: "facebook/mms-tts-eng". | |
API_URL = ( | |
"https://api-inference.huggingface.co/models/espnet/kan-bayashi_ljspeech_vits" | |
) | |
# API_URL = "https://api-inference.huggingface.co/models/facebook/mms-tts-eng" | |
headers = {"Authorization": f"Bearer {HUGGINGFACEHUB_API_TOKEN}"} | |
payload = {"inputs": story} | |
response = requests.post(API_URL, headers=headers, json=payload) | |
with open("audio.flac", "wb") as file: | |
file.write(response.content) | |
############################################################################################################################# | |
# Main function to create the Streamlit web application. | |
def main(): | |
try: | |
# Page title and favicon. | |
st.set_page_config(page_title="Image To Audio Story", page_icon="🖼️") | |
# Load CSS. | |
local_css("styles/style.css") | |
# Title. | |
title = f"""<h1 align="center" style="font-family: monospace; font-size: 2.1rem; margin-top: -4rem"> | |
Turn Image to Audio Story</h1>""" | |
st.markdown(title, unsafe_allow_html=True) | |
# Define the personalities for the dropdown menu. | |
personalities = [ | |
"Donald Trump", | |
"Abraham Lincoln", | |
"Aristotle", | |
"Cardi B", | |
"Kanye West", | |
] | |
personality = st.selectbox("Select a personality:", personalities) | |
# Upload an image. | |
uploaded_file = st.file_uploader("Choose an image:") | |
if uploaded_file is not None: | |
# Display the uploaded image. | |
bytes_data = uploaded_file.getvalue() | |
with open(uploaded_file.name, "wb") as file: | |
file.write(bytes_data) | |
st.image(uploaded_file, caption="Uploaded Image.", use_column_width=True) | |
with st.spinner(text="Model Inference..."): # Spinner to keep the application interactive. | |
# Model inference. | |
scenario = img_to_text(uploaded_file.name) | |
story = generate_story(scenario=scenario, personality=personality) | |
text_to_speech(story) | |
# Display the scenario and story. | |
with st.expander("Scenario"): | |
st.write(scenario) | |
with st.expander("Story"): | |
st.write(story) | |
# Display the audio. | |
st.audio("audio.flac") | |
except Exception as e: | |
# Display any errors. | |
st.error(e) | |
############################################################################################################################# | |
if __name__ == "__main__": | |
main() | |