GeorgiosIoannouCoder
commited on
Commit
•
74a334c
1
Parent(s):
8685fa4
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,236 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
##############################################################################################################
|
2 |
+
# Filename: app.py
|
3 |
+
# Description: A Streamlit application to test our implementation of the x4 model,
|
4 |
+
# as descirbed in the paper "Real-ESRGAN: Training Real-World Blind Super-Resolution with Pure Synthetic Data"
|
5 |
+
##############################################################################################################
|
6 |
+
#
|
7 |
+
# Import libraries.
|
8 |
+
#
|
9 |
+
import cv2
|
10 |
+
import numpy as np
|
11 |
+
import requests
|
12 |
+
import streamlit as st
|
13 |
+
|
14 |
+
from basicsr.archs.rrdbnet_arch import RRDBNet
|
15 |
+
from inference.real_esrgan import RealEsrGan
|
16 |
+
from io import BytesIO
|
17 |
+
from PIL import Image
|
18 |
+
|
19 |
+
##############################################################################################################
|
20 |
+
|
21 |
+
|
22 |
+
# Function to run inference using the RealEsrGan model.
|
23 |
+
def run_inference(
|
24 |
+
uploaded_file,
|
25 |
+
model_name="REALESRGAN_x4",
|
26 |
+
output_path="inferences",
|
27 |
+
upscale=4,
|
28 |
+
extension="auto",
|
29 |
+
device=None,
|
30 |
+
gpu_id=None,
|
31 |
+
):
|
32 |
+
try:
|
33 |
+
# Create an RRDBNet model instance.
|
34 |
+
model = RRDBNet(
|
35 |
+
num_in_ch=3,
|
36 |
+
num_out_ch=3,
|
37 |
+
num_feat=64,
|
38 |
+
num_block=23,
|
39 |
+
num_grow_ch=32,
|
40 |
+
scale=upscale,
|
41 |
+
)
|
42 |
+
|
43 |
+
# Set default model path based on the selected model name
|
44 |
+
if model_name == None:
|
45 |
+
model_path = "./models/REALESRGAN_x4.pth"
|
46 |
+
elif model_name == "REALESRGAN_x4":
|
47 |
+
model_path = "./models/REALESRGAN_x4.pth"
|
48 |
+
elif model_name == "REALESRNET_x4":
|
49 |
+
model_path = "./models/REALESRNET_x4.pth"
|
50 |
+
|
51 |
+
# Create an RealEsrGan model instance.
|
52 |
+
upsampler = RealEsrGan(
|
53 |
+
scale=upscale,
|
54 |
+
model_path=model_path,
|
55 |
+
dni_weight=None,
|
56 |
+
model=model,
|
57 |
+
pre_pad=10,
|
58 |
+
half=False,
|
59 |
+
device=device,
|
60 |
+
gpu_id=gpu_id,
|
61 |
+
)
|
62 |
+
|
63 |
+
# Process the input image.
|
64 |
+
if hasattr(
|
65 |
+
uploaded_file, "read"
|
66 |
+
): # Check if it's a file uploaded from the local system.
|
67 |
+
img_pil = Image.open(uploaded_file)
|
68 |
+
elif uploaded_file.startswith("http"): # If it is an image URL.
|
69 |
+
response = requests.get(uploaded_file)
|
70 |
+
img_pil = Image.open(BytesIO(response.content))
|
71 |
+
else:
|
72 |
+
st.warning(
|
73 |
+
"Invalid input. Please provide either an image file or an image URL."
|
74 |
+
)
|
75 |
+
return
|
76 |
+
|
77 |
+
# Convert PIL image to OpenCV format.
|
78 |
+
img = cv2.cvtColor(np.array(img_pil), cv2.COLOR_RGB2BGR)
|
79 |
+
# Perform super-resolution using Real-ESRGAN.
|
80 |
+
output, _ = upsampler.enhance(img, upscale=upscale)
|
81 |
+
|
82 |
+
# Determine the file extension for saving the output image.
|
83 |
+
if len(img.shape) == 3 and img.shape[2] == 4:
|
84 |
+
img_mode = "RGBA"
|
85 |
+
extension = "png"
|
86 |
+
else:
|
87 |
+
img_mode = None
|
88 |
+
if extension == "auto":
|
89 |
+
extension = "png" # Default extension for images from URL.
|
90 |
+
|
91 |
+
# Save the super resolution image
|
92 |
+
save_path = f"{output_path}/{model_name}_inference.{extension}"
|
93 |
+
cv2.imwrite(save_path, output)
|
94 |
+
except Exception as e:
|
95 |
+
st.error(e)
|
96 |
+
return save_path
|
97 |
+
|
98 |
+
|
99 |
+
##############################################################################################################
|
100 |
+
|
101 |
+
|
102 |
+
# Function to apply local CSS.
|
103 |
+
def local_css(file_name):
|
104 |
+
with open(file_name) as f:
|
105 |
+
st.markdown(f"<style>{f.read()}</style>", unsafe_allow_html=True)
|
106 |
+
|
107 |
+
|
108 |
+
##############################################################################################################
|
109 |
+
# Main function to create the Streamlit web application.
|
110 |
+
def main():
|
111 |
+
try:
|
112 |
+
# Load CSS.
|
113 |
+
local_css("styles/style.css")
|
114 |
+
|
115 |
+
# Title.
|
116 |
+
title = f"""<p align="center" style="font-family: monospace; color: #FAF9F6; font-size: 2.3rem;">
|
117 |
+
Super Upscale Resolution with Real-ESRGAN</p>"""
|
118 |
+
st.markdown(title, unsafe_allow_html=True)
|
119 |
+
|
120 |
+
# Toggle button for displaying text input or file uploader.
|
121 |
+
title = f"""<p style="font-family: monospace; color: white;">
|
122 |
+
Enter Image URL or Upload Image (checkbox):</p>"""
|
123 |
+
st.markdown(title, unsafe_allow_html=True)
|
124 |
+
|
125 |
+
use_image_url = st.checkbox(
|
126 |
+
label="Enter Image URL or Upload Image:", label_visibility="collapsed"
|
127 |
+
)
|
128 |
+
|
129 |
+
# Input for image URL or file uploader based on the checkbox state.
|
130 |
+
if use_image_url:
|
131 |
+
image_url_label = f"""
|
132 |
+
<p style="font-family: monospace; color: white;">Enter Image URL:</p>"""
|
133 |
+
st.markdown(image_url_label, unsafe_allow_html=True)
|
134 |
+
|
135 |
+
image_url = st.text_input(
|
136 |
+
label="Enter Image URL:",
|
137 |
+
value="",
|
138 |
+
label_visibility="collapsed",
|
139 |
+
)
|
140 |
+
else:
|
141 |
+
uploaded_file_label = f"""
|
142 |
+
<p style="font-family: monospace; color: white;">Upload Image:</p>"""
|
143 |
+
st.markdown(uploaded_file_label, unsafe_allow_html=True)
|
144 |
+
uploaded_file = st.file_uploader(
|
145 |
+
label="Upload Image:",
|
146 |
+
type=["jpg", "png", "jpeg"],
|
147 |
+
label_visibility="collapsed",
|
148 |
+
)
|
149 |
+
|
150 |
+
# Dropdown menu for model selection.
|
151 |
+
model_name_label = f"""
|
152 |
+
<p style="font-family: monospace; color: white;">Select Model:</p>"""
|
153 |
+
st.markdown(model_name_label, unsafe_allow_html=True)
|
154 |
+
|
155 |
+
model_name = st.selectbox(
|
156 |
+
label="Select Model:",
|
157 |
+
options=[
|
158 |
+
"REALESRGAN_x4",
|
159 |
+
"REALESRNET_x4",
|
160 |
+
],
|
161 |
+
label_visibility="collapsed",
|
162 |
+
)
|
163 |
+
|
164 |
+
# Slider for upscale selection.
|
165 |
+
model_name_label = f"""
|
166 |
+
<p style="font-family: monospace; color: white;">Select Upscale Factor. Model works best with x4 upscale:</p>"""
|
167 |
+
st.markdown(model_name_label, unsafe_allow_html=True)
|
168 |
+
|
169 |
+
upscale = st.slider(
|
170 |
+
label="Select Upscale Factor. Model works best with x4 upscale:",
|
171 |
+
min_value=3,
|
172 |
+
max_value=10,
|
173 |
+
value=4,
|
174 |
+
step=1,
|
175 |
+
label_visibility="collapsed",
|
176 |
+
)
|
177 |
+
|
178 |
+
if not use_image_url and uploaded_file is not None:
|
179 |
+
# Image caption.
|
180 |
+
image_caption = f"""<p align="center" style="font-family: monospace; color: #FAF9F6; font-size: 2.3rem;">
|
181 |
+
Uploaded Image:</p>"""
|
182 |
+
st.markdown(image_caption, unsafe_allow_html=True)
|
183 |
+
st.image(uploaded_file)
|
184 |
+
|
185 |
+
with st.spinner(
|
186 |
+
text="Running Inference. May take up to 3 minutes. Please be patient..."
|
187 |
+
):
|
188 |
+
if st.button("Run Inference"):
|
189 |
+
if use_image_url and image_url != "":
|
190 |
+
result_path = run_inference(
|
191 |
+
uploaded_file=image_url,
|
192 |
+
model_name=model_name,
|
193 |
+
upscale=upscale,
|
194 |
+
)
|
195 |
+
# Image caption.
|
196 |
+
image_caption = f"""<p align="center" style="font-family: monospace; color: #FAF9F6; font-size: 2.3rem;">
|
197 |
+
Resulting Image:</p>"""
|
198 |
+
st.markdown(image_caption, unsafe_allow_html=True)
|
199 |
+
st.image(result_path)
|
200 |
+
|
201 |
+
st.success("Inference completed!")
|
202 |
+
elif not use_image_url and uploaded_file is not None:
|
203 |
+
result_path = run_inference(
|
204 |
+
uploaded_file=uploaded_file,
|
205 |
+
model_name=model_name,
|
206 |
+
upscale=upscale,
|
207 |
+
)
|
208 |
+
|
209 |
+
# Image caption.
|
210 |
+
image_caption = f"""<p align="center" style="font-family: monospace; color: #FAF9F6; font-size: 2.3rem;">
|
211 |
+
Resulting Image:</p>"""
|
212 |
+
st.markdown(image_caption, unsafe_allow_html=True)
|
213 |
+
st.image(result_path)
|
214 |
+
|
215 |
+
st.success("Inference completed!")
|
216 |
+
else:
|
217 |
+
st.warning("Please provide either an image file or an image URL.")
|
218 |
+
|
219 |
+
# GitHub repository of this project.
|
220 |
+
st.markdown(
|
221 |
+
f"""
|
222 |
+
<p align="center" style="font-family: monospace; color: #FAF9F6; font-size: 1rem;">
|
223 |
+
<b>Check out our <a href="https://github.com/GeorgiosIoannouCoder/realesrgan" style="color: #FAF9F6;">GitHub repository</a></b>
|
224 |
+
</p>
|
225 |
+
""",
|
226 |
+
unsafe_allow_html=True,
|
227 |
+
)
|
228 |
+
except Exception as e:
|
229 |
+
st.error(e)
|
230 |
+
|
231 |
+
|
232 |
+
##############################################################################################################
|
233 |
+
|
234 |
+
if __name__ == "__main__":
|
235 |
+
main()
|
236 |
+
##############################################################################################################
|