File size: 1,392 Bytes
fa98313
 
 
 
75c5a2c
fa98313
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
---
license: mit
title: Streamlit simple QA Inference App with Ollama, Nvidia Cloud and Groq
app_file: Home.py
sdk: streamlit
---

#  Streamlit simple QA Inference App with Ollama, Nvidia Cloud and Groq

> Post : [https://iaetbibliotheques.fr/2024/05/comment-executer-localement-un-llm-22](https://iaetbibliotheques.fr/2024/05/comment-executer-localement-un-llm-22)

> Deployed : no

Two different ways to develop the same chatbot application
- app_api_completion.py : make QA inference with LLMs by choosing between the native Chat API completion endpoints provided by Ollama, Nvidia or Groq
- app_langchain_completion.py : make QA inference with LLMs with the dedicated Langchain wrappers for Ollama, Nvidia or Groq

You can use one, two or the three LLMs hosting solutions according to your environment :

- a running Ollama instance : the default base_url is http://localhost:11434 but if needed (remote or dockerized Ollama instance for example) you change it in the OllamaClient in clients.py
*and/or*
- a valid API key on the Nvidia Cloud : [https://build.nvidia.com/explore/discover](https://build.nvidia.com/explore/discover)
*and/or*
- a valid API key on Groq Cloud : [https://console.groq.com/playground](https://console.groq.com/playground)



```
git clone
pip install -r requirements.txt
streamlit run Home.py
```

Running on http://localhost:8501

![screenshot](screenshot.png)