Update pages/app_langchain_completion.py
Browse files- pages/app_langchain_completion.py +135 -135
pages/app_langchain_completion.py
CHANGED
@@ -1,135 +1,135 @@
|
|
1 |
-
import requests
|
2 |
-
import json
|
3 |
-
import os
|
4 |
-
import streamlit as st
|
5 |
-
from langchain_community.llms import Ollama
|
6 |
-
from langchain_nvidia_ai_endpoints import ChatNVIDIA
|
7 |
-
from langchain_groq import ChatGroq
|
8 |
-
from langchain.chains import ConversationChain
|
9 |
-
from langchain.memory import ConversationBufferMemory
|
10 |
-
from clients import OllamaClient, GroqClient
|
11 |
-
|
12 |
-
st.set_page_config(
|
13 |
-
page_title="QA Inference Streamlit App using Ollama, Nvidia and Groq with Langchain framework"
|
14 |
-
)
|
15 |
-
|
16 |
-
|
17 |
-
# Cache the header of the app to prevent re-rendering on each load
|
18 |
-
@st.cache_resource
|
19 |
-
def display_app_header():
|
20 |
-
"""Display the header of the Streamlit app."""
|
21 |
-
st.title("QA Inference with Ollama & Nvidia & Groq as LLMs providers")
|
22 |
-
st.subheader("ChatBot based on Langchain framework")
|
23 |
-
|
24 |
-
|
25 |
-
# Display the header of the app
|
26 |
-
display_app_header()
|
27 |
-
|
28 |
-
# UI sidebar ##########################################
|
29 |
-
st.sidebar.subheader("Models")
|
30 |
-
# LLM
|
31 |
-
llm_providers = {
|
32 |
-
"Local Ollama": "ollama",
|
33 |
-
"Cloud Nvidia": "nvidia",
|
34 |
-
"Cloud Groq": "groq",
|
35 |
-
}
|
36 |
-
# hard coded because models returned by NvidiaClient().list_models() are not well formed for Langchain ChatNVIDIA class
|
37 |
-
llms_from_nvidia = [
|
38 |
-
"ai-llama3-70b",
|
39 |
-
"ai-mistral-large",
|
40 |
-
"ai-gemma-7b",
|
41 |
-
"ai-codellama-70b",
|
42 |
-
]
|
43 |
-
llm_provider = st.sidebar.radio(
|
44 |
-
"Choose your LLM Provider", llm_providers.keys(), key="llm_provider"
|
45 |
-
)
|
46 |
-
if llm_provider == "Local Ollama":
|
47 |
-
ollama_list_models = OllamaClient().list_models()
|
48 |
-
ollama_models = [x["name"] for x in ollama_list_models["models"]]
|
49 |
-
ollama_llm = st.sidebar.radio(
|
50 |
-
"Select your Ollama model", ollama_models, key="ollama_llm"
|
51 |
-
) # retrive with st.session_state["ollama_llm"]
|
52 |
-
elif llm_provider == "Cloud Nvidia":
|
53 |
-
if nvidia_api_token := st.sidebar.text_input("Enter your Nvidia API Key"):
|
54 |
-
os.environ["NVIDIA_API_KEY"] = nvidia_api_token
|
55 |
-
st.sidebar.info("nvidia authentification ok")
|
56 |
-
# nvidia_models = [model.model_name for model in list_nvidia_models() if (model.model_type == "chat") & (model.model_name is not None)] # list is false
|
57 |
-
nvidia_models = llms_from_nvidia
|
58 |
-
nvidia_llm = st.sidebar.radio(
|
59 |
-
"Select your Nvidia LLM", nvidia_models, key="nvidia_llm"
|
60 |
-
)
|
61 |
-
else:
|
62 |
-
st.sidebar.warning("You must enter your Nvidia API key")
|
63 |
-
elif llm_provider == "Cloud Groq":
|
64 |
-
if groq_api_token := st.sidebar.text_input("Enter your Groq API Key"):
|
65 |
-
st.sidebar.info("Groq authentification ok")
|
66 |
-
groq_list_models = GroqClient(api_key=groq_api_token).list_models()
|
67 |
-
groq_models = [x["id"] for x in groq_list_models["data"]]
|
68 |
-
groq_llm = st.sidebar.radio("Choose your Groq LLM", groq_models, key="groq_llm")
|
69 |
-
else:
|
70 |
-
st.sidebar.warning("You must enter your Groq API key")
|
71 |
-
|
72 |
-
# LLM parameters
|
73 |
-
st.sidebar.subheader("Parameters")
|
74 |
-
max_tokens = st.sidebar.number_input("Token numbers", value=1024, key="max_tokens")
|
75 |
-
temperature = st.sidebar.slider(
|
76 |
-
"Temperature", min_value=0.0, max_value=1.0, value=0.5, step=0.1, key="temperature"
|
77 |
-
)
|
78 |
-
top_p = st.sidebar.slider(
|
79 |
-
"Top P", min_value=0.0, max_value=1.0, value=0.7, step=0.1, key="top_p"
|
80 |
-
)
|
81 |
-
|
82 |
-
|
83 |
-
# LLM client #########################################
|
84 |
-
class LlmProvider:
|
85 |
-
def __init__(self, provider):
|
86 |
-
if provider == "ollama":
|
87 |
-
self.llm = Ollama(
|
88 |
-
model=st.session_state["ollama_llm"],
|
89 |
-
temperature=st.session_state["temperature"],
|
90 |
-
max_tokens=st.session_state["max_tokens"],
|
91 |
-
top_p=st.session_state["top_p"],
|
92 |
-
)
|
93 |
-
elif provider == "nvidia":
|
94 |
-
self.llm = ChatNVIDIA(
|
95 |
-
model=st.session_state["nvidia_llm"],
|
96 |
-
temperature=st.session_state["temperature"],
|
97 |
-
max_tokens=st.session_state["max_tokens"],
|
98 |
-
top_p=st.session_state["top_p"],
|
99 |
-
)
|
100 |
-
elif provider == "groq":
|
101 |
-
self.llm = ChatGroq(
|
102 |
-
groq_api_key = groq_api_token,
|
103 |
-
model_name=st.session_state["groq_llm"],
|
104 |
-
temperature=st.session_state["temperature"],
|
105 |
-
max_tokens=st.session_state["max_tokens"],
|
106 |
-
top_p=st.session_state["top_p"],
|
107 |
-
)
|
108 |
-
|
109 |
-
|
110 |
-
# Initialize chat history
|
111 |
-
if "messages" not in st.session_state:
|
112 |
-
st.session_state.messages = []
|
113 |
-
|
114 |
-
# Display chat messages from history on app rerun
|
115 |
-
for message in st.session_state.messages:
|
116 |
-
with st.chat_message(message["role"]):
|
117 |
-
st.markdown(message["content"])
|
118 |
-
|
119 |
-
# React to user input
|
120 |
-
if prompt := st.chat_input("What is up?"):
|
121 |
-
# Display user message in chat message container
|
122 |
-
with st.chat_message("user"):
|
123 |
-
st.markdown(prompt)
|
124 |
-
conversation = ConversationChain(
|
125 |
-
llm=LlmProvider(llm_providers[st.session_state["llm_provider"]]).llm,
|
126 |
-
memory=ConversationBufferMemory(),
|
127 |
-
)
|
128 |
-
response = f"Echo: {prompt}"
|
129 |
-
# Display assistant response in chat message container
|
130 |
-
with st.chat_message("assistant"):
|
131 |
-
# response = LlmProvider1(llm_providers[llm_provider], prompt=prompt).response
|
132 |
-
response = conversation.invoke(prompt)["response"]
|
133 |
-
st.markdown(response)
|
134 |
-
# Add assistant response to chat history
|
135 |
-
st.session_state.messages.append({"role": "assistant", "content": response})
|
|
|
1 |
+
import requests
|
2 |
+
import json
|
3 |
+
import os
|
4 |
+
import streamlit as st
|
5 |
+
from langchain_community.llms import Ollama
|
6 |
+
from langchain_nvidia_ai_endpoints import ChatNVIDIA
|
7 |
+
from langchain_groq import ChatGroq
|
8 |
+
from langchain.chains import ConversationChain
|
9 |
+
from langchain.memory import ConversationBufferMemory
|
10 |
+
from clients import OllamaClient, GroqClient
|
11 |
+
|
12 |
+
st.set_page_config(
|
13 |
+
page_title="QA Inference Streamlit App using Ollama, Nvidia and Groq with Langchain framework"
|
14 |
+
)
|
15 |
+
|
16 |
+
|
17 |
+
# Cache the header of the app to prevent re-rendering on each load
|
18 |
+
@st.cache_resource
|
19 |
+
def display_app_header():
|
20 |
+
"""Display the header of the Streamlit app."""
|
21 |
+
st.title("QA Inference with Ollama & Nvidia & Groq as LLMs providers")
|
22 |
+
st.subheader("ChatBot based on Langchain framework")
|
23 |
+
|
24 |
+
|
25 |
+
# Display the header of the app
|
26 |
+
display_app_header()
|
27 |
+
|
28 |
+
# UI sidebar ##########################################
|
29 |
+
st.sidebar.subheader("Models")
|
30 |
+
# LLM
|
31 |
+
llm_providers = {
|
32 |
+
"Local Ollama": "ollama",
|
33 |
+
"Cloud Nvidia": "nvidia",
|
34 |
+
"Cloud Groq": "groq",
|
35 |
+
}
|
36 |
+
# hard coded because models returned by NvidiaClient().list_models() are not well formed for Langchain ChatNVIDIA class
|
37 |
+
llms_from_nvidia = [
|
38 |
+
"ai-llama3-70b",
|
39 |
+
"ai-mistral-large",
|
40 |
+
"ai-gemma-7b",
|
41 |
+
"ai-codellama-70b",
|
42 |
+
]
|
43 |
+
llm_provider = st.sidebar.radio(
|
44 |
+
"Choose your LLM Provider", llm_providers.keys(), key="llm_provider"
|
45 |
+
)
|
46 |
+
if llm_provider == "Local Ollama":
|
47 |
+
ollama_list_models = OllamaClient().list_models()
|
48 |
+
ollama_models = [x["name"] for x in ollama_list_models["models"]]
|
49 |
+
ollama_llm = st.sidebar.radio(
|
50 |
+
"Select your Ollama model", ollama_models, key="ollama_llm"
|
51 |
+
) # retrive with st.session_state["ollama_llm"]
|
52 |
+
elif llm_provider == "Cloud Nvidia":
|
53 |
+
if nvidia_api_token := st.sidebar.text_input("Enter your Nvidia API Key", type="password"):
|
54 |
+
os.environ["NVIDIA_API_KEY"] = nvidia_api_token
|
55 |
+
st.sidebar.info("nvidia authentification ok")
|
56 |
+
# nvidia_models = [model.model_name for model in list_nvidia_models() if (model.model_type == "chat") & (model.model_name is not None)] # list is false
|
57 |
+
nvidia_models = llms_from_nvidia
|
58 |
+
nvidia_llm = st.sidebar.radio(
|
59 |
+
"Select your Nvidia LLM", nvidia_models, key="nvidia_llm"
|
60 |
+
)
|
61 |
+
else:
|
62 |
+
st.sidebar.warning("You must enter your Nvidia API key")
|
63 |
+
elif llm_provider == "Cloud Groq":
|
64 |
+
if groq_api_token := st.sidebar.text_input("Enter your Groq API Key", type="password"):
|
65 |
+
st.sidebar.info("Groq authentification ok")
|
66 |
+
groq_list_models = GroqClient(api_key=groq_api_token).list_models()
|
67 |
+
groq_models = [x["id"] for x in groq_list_models["data"]]
|
68 |
+
groq_llm = st.sidebar.radio("Choose your Groq LLM", groq_models, key="groq_llm")
|
69 |
+
else:
|
70 |
+
st.sidebar.warning("You must enter your Groq API key")
|
71 |
+
|
72 |
+
# LLM parameters
|
73 |
+
st.sidebar.subheader("Parameters")
|
74 |
+
max_tokens = st.sidebar.number_input("Token numbers", value=1024, key="max_tokens")
|
75 |
+
temperature = st.sidebar.slider(
|
76 |
+
"Temperature", min_value=0.0, max_value=1.0, value=0.5, step=0.1, key="temperature"
|
77 |
+
)
|
78 |
+
top_p = st.sidebar.slider(
|
79 |
+
"Top P", min_value=0.0, max_value=1.0, value=0.7, step=0.1, key="top_p"
|
80 |
+
)
|
81 |
+
|
82 |
+
|
83 |
+
# LLM client #########################################
|
84 |
+
class LlmProvider:
|
85 |
+
def __init__(self, provider):
|
86 |
+
if provider == "ollama":
|
87 |
+
self.llm = Ollama(
|
88 |
+
model=st.session_state["ollama_llm"],
|
89 |
+
temperature=st.session_state["temperature"],
|
90 |
+
max_tokens=st.session_state["max_tokens"],
|
91 |
+
top_p=st.session_state["top_p"],
|
92 |
+
)
|
93 |
+
elif provider == "nvidia":
|
94 |
+
self.llm = ChatNVIDIA(
|
95 |
+
model=st.session_state["nvidia_llm"],
|
96 |
+
temperature=st.session_state["temperature"],
|
97 |
+
max_tokens=st.session_state["max_tokens"],
|
98 |
+
top_p=st.session_state["top_p"],
|
99 |
+
)
|
100 |
+
elif provider == "groq":
|
101 |
+
self.llm = ChatGroq(
|
102 |
+
groq_api_key = groq_api_token,
|
103 |
+
model_name=st.session_state["groq_llm"],
|
104 |
+
temperature=st.session_state["temperature"],
|
105 |
+
max_tokens=st.session_state["max_tokens"],
|
106 |
+
top_p=st.session_state["top_p"],
|
107 |
+
)
|
108 |
+
|
109 |
+
|
110 |
+
# Initialize chat history
|
111 |
+
if "messages" not in st.session_state:
|
112 |
+
st.session_state.messages = []
|
113 |
+
|
114 |
+
# Display chat messages from history on app rerun
|
115 |
+
for message in st.session_state.messages:
|
116 |
+
with st.chat_message(message["role"]):
|
117 |
+
st.markdown(message["content"])
|
118 |
+
|
119 |
+
# React to user input
|
120 |
+
if prompt := st.chat_input("What is up?"):
|
121 |
+
# Display user message in chat message container
|
122 |
+
with st.chat_message("user"):
|
123 |
+
st.markdown(prompt)
|
124 |
+
conversation = ConversationChain(
|
125 |
+
llm=LlmProvider(llm_providers[st.session_state["llm_provider"]]).llm,
|
126 |
+
memory=ConversationBufferMemory(),
|
127 |
+
)
|
128 |
+
response = f"Echo: {prompt}"
|
129 |
+
# Display assistant response in chat message container
|
130 |
+
with st.chat_message("assistant"):
|
131 |
+
# response = LlmProvider1(llm_providers[llm_provider], prompt=prompt).response
|
132 |
+
response = conversation.invoke(prompt)["response"]
|
133 |
+
st.markdown(response)
|
134 |
+
# Add assistant response to chat history
|
135 |
+
st.session_state.messages.append({"role": "assistant", "content": response})
|