Conditional-GAN-MNIST / conditional_gan.py
Gholamreza's picture
Upload 5 files
8895b4f verified
raw
history blame
1.75 kB
# This files serves the neccessary functions for generating images using pretrained models
import torch
import torch.nn as nn
import torch.nn.functional as F
from torchvision.utils import make_grid
import matplotlib.pyplot as plt
from models import get_noise
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
def display_image_grid(images, num_rows=5, title=""):
if(images.shape[-1]!=28):
images = images.view(-1, 1, 28, 28)
plt.figure(figsize=(5, 5))
plt.axis("off")
plt.title(title)
grid = make_grid(images.detach().cpu()[:25], nrow=num_rows).permute(1, 2, 0).numpy()
plt.imshow(grid)
plt.show()
def check_generation(generator):
generator.eval()
labels = torch.tensor([0,1,2,3,4,5,6,7,8,9] * 10).to(device)
fake_eval_batch = generator(get_noise(100, 10, device=device), labels).view(-1, 1, 28, 28)
grid = make_grid(fake_eval_batch.detach().cpu(), nrow=10).permute(1, 2, 0).numpy()
plt.figure(figsize=(9, 9))
plt.title("Generated Images")
plt.axis('off')
plt.xlabel("Class")
plt.imshow(grid)
plt.show()
def generate_digit(generator, digit):
generator.eval()
labels = torch.tensor([digit] * 25).to(device)
fake_eval_batch = generator(get_noise(25, 10, device=device), labels).view(-1, 1, 28, 28)
grid = make_grid(fake_eval_batch.detach().cpu(), nrow=5).permute(1, 2, 0).numpy()
plt.figure(figsize=(5, 5))
# no border
plt.axis('off')
plt.grid(False)
plt.xticks([])
plt.yticks([])
plt.imshow(grid)
plt.savefig('generated_digit.png', bbox_inches='tight', pad_inches=0) # Save the generated image
return 'generated_digit.png' # Return the image path