|
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
from torchvision.utils import make_grid
|
|
import matplotlib.pyplot as plt
|
|
|
|
from models import get_noise
|
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
|
|
def display_image_grid(images, num_rows=5, title=""):
|
|
if(images.shape[-1]!=28):
|
|
images = images.view(-1, 1, 28, 28)
|
|
plt.figure(figsize=(5, 5))
|
|
plt.axis("off")
|
|
plt.title(title)
|
|
grid = make_grid(images.detach().cpu()[:25], nrow=num_rows).permute(1, 2, 0).numpy()
|
|
plt.imshow(grid)
|
|
plt.show()
|
|
|
|
def check_generation(generator):
|
|
generator.eval()
|
|
labels = torch.tensor([0,1,2,3,4,5,6,7,8,9] * 10).to(device)
|
|
fake_eval_batch = generator(get_noise(100, 10, device=device), labels).view(-1, 1, 28, 28)
|
|
grid = make_grid(fake_eval_batch.detach().cpu(), nrow=10).permute(1, 2, 0).numpy()
|
|
plt.figure(figsize=(9, 9))
|
|
plt.title("Generated Images")
|
|
plt.axis('off')
|
|
plt.xlabel("Class")
|
|
plt.imshow(grid)
|
|
plt.show()
|
|
|
|
def generate_digit(generator, digit):
|
|
generator.eval()
|
|
labels = torch.tensor([digit] * 25).to(device)
|
|
fake_eval_batch = generator(get_noise(25, 10, device=device), labels).view(-1, 1, 28, 28)
|
|
grid = make_grid(fake_eval_batch.detach().cpu(), nrow=5).permute(1, 2, 0).numpy()
|
|
plt.figure(figsize=(5, 5))
|
|
|
|
plt.axis('off')
|
|
plt.grid(False)
|
|
plt.xticks([])
|
|
plt.yticks([])
|
|
plt.imshow(grid)
|
|
plt.savefig('generated_digit.png', bbox_inches='tight', pad_inches=0)
|
|
return 'generated_digit.png' |