# This files serves the neccessary functions for generating images using pretrained models import torch import torch.nn as nn import torch.nn.functional as F from torchvision.utils import make_grid import matplotlib.pyplot as plt from models import get_noise device = torch.device("cuda" if torch.cuda.is_available() else "cpu") def display_image_grid(images, num_rows=5, title=""): if(images.shape[-1]!=28): images = images.view(-1, 1, 28, 28) plt.figure(figsize=(5, 5)) plt.axis("off") plt.title(title) grid = make_grid(images.detach().cpu()[:25], nrow=num_rows).permute(1, 2, 0).numpy() plt.imshow(grid) plt.show() def check_generation(generator): generator.eval() labels = torch.tensor([0,1,2,3,4,5,6,7,8,9] * 10).to(device) fake_eval_batch = generator(get_noise(100, 10, device=device), labels).view(-1, 1, 28, 28) grid = make_grid(fake_eval_batch.detach().cpu(), nrow=10).permute(1, 2, 0).numpy() plt.figure(figsize=(9, 9)) plt.title("Generated Images") plt.axis('off') plt.xlabel("Class") plt.imshow(grid) plt.show() def generate_digit(generator, digit): generator.eval() labels = torch.tensor([digit] * 25).to(device) fake_eval_batch = generator(get_noise(25, 10, device=device), labels).view(-1, 1, 28, 28) grid = make_grid(fake_eval_batch.detach().cpu(), nrow=5).permute(1, 2, 0).numpy() plt.figure(figsize=(5, 5)) # no border plt.axis('off') plt.grid(False) plt.xticks([]) plt.yticks([]) plt.imshow(grid) plt.savefig('generated_digit.png', bbox_inches='tight', pad_inches=0) # Save the generated image return 'generated_digit.png' # Return the image path