Spaces:
Sleeping
Sleeping
AshDavid12
commited on
Commit
·
d1f9a9c
1
Parent(s):
b7e558a
hf home change
Browse files- Dockerfile +3 -8
- infer.py +23 -80
- requirements.txt +1 -3
Dockerfile
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
# Use an official Python runtime as a base image
|
2 |
-
|
3 |
|
4 |
# Set the working directory
|
5 |
WORKDIR /app
|
@@ -10,7 +10,6 @@ RUN mkdir -p /app/hf_cache && chmod -R 777 /app/hf_cache
|
|
10 |
# Set the environment variable for the Hugging Face cache
|
11 |
ENV HF_HOME=/app/hf_cache
|
12 |
|
13 |
-
|
14 |
# Copy the requirements.txt file and install the dependencies
|
15 |
COPY requirements.txt .
|
16 |
RUN pip install --no-cache-dir -r requirements.txt
|
@@ -18,9 +17,5 @@ RUN pip install --no-cache-dir -r requirements.txt
|
|
18 |
# Copy the current directory contents into the container at /app
|
19 |
COPY . .
|
20 |
|
21 |
-
#
|
22 |
-
|
23 |
-
|
24 |
-
# Command to run the transcription script or API server on Hugging Face
|
25 |
-
CMD ["uvicorn", "infer:app", "--host", "0.0.0.0", "--port", "7860"]
|
26 |
-
|
|
|
1 |
# Use an official Python runtime as a base image
|
2 |
+
FROM python:3.11.1-buster
|
3 |
|
4 |
# Set the working directory
|
5 |
WORKDIR /app
|
|
|
10 |
# Set the environment variable for the Hugging Face cache
|
11 |
ENV HF_HOME=/app/hf_cache
|
12 |
|
|
|
13 |
# Copy the requirements.txt file and install the dependencies
|
14 |
COPY requirements.txt .
|
15 |
RUN pip install --no-cache-dir -r requirements.txt
|
|
|
17 |
# Copy the current directory contents into the container at /app
|
18 |
COPY . .
|
19 |
|
20 |
+
# Command to run the Python transcription script directly
|
21 |
+
CMD ["python", "whisper_test.py"]
|
|
|
|
|
|
|
|
infer.py
CHANGED
@@ -1,95 +1,38 @@
|
|
1 |
import torch
|
2 |
from transformers import WhisperProcessor, WhisperForConditionalGeneration
|
3 |
-
import soundfile as sf
|
4 |
-
from fastapi import FastAPI, File, UploadFile, Form
|
5 |
-
import uvicorn
|
6 |
import requests
|
7 |
-
import
|
8 |
-
|
9 |
-
|
10 |
-
# Initialize FastAPI app
|
11 |
-
app = FastAPI()
|
12 |
-
|
13 |
-
# Print initialization of the application
|
14 |
-
print("FastAPI application started.")
|
15 |
|
16 |
-
# Load the Whisper model and processor
|
17 |
model_name = "openai/whisper-base"
|
18 |
-
|
19 |
-
|
20 |
-
try:
|
21 |
-
processor = WhisperProcessor.from_pretrained(model_name)
|
22 |
-
model = WhisperForConditionalGeneration.from_pretrained(model_name)
|
23 |
-
print(f"Model {model_name} successfully loaded.")
|
24 |
-
except Exception as e:
|
25 |
-
print(f"Error loading the model: {e}")
|
26 |
-
raise e
|
27 |
|
28 |
-
#
|
29 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
30 |
model.to(device)
|
31 |
-
print(f"Model is using device: {device}")
|
32 |
-
|
33 |
-
|
34 |
-
@app.post("/transcribe/")
|
35 |
-
def transcribe_audio_url(audio_url: str = Form(...)):
|
36 |
-
# Download the audio file from the provided URL
|
37 |
-
try:
|
38 |
-
response = requests.get(audio_url)
|
39 |
-
if response.status_code != 200:
|
40 |
-
return {"error": f"Failed to download audio from URL. Status code: {response.status_code}"}
|
41 |
-
print(f"Successfully downloaded audio from URL: {audio_url}")
|
42 |
-
audio_data = io.BytesIO(response.content) # Store audio data in memory
|
43 |
-
except Exception as e:
|
44 |
-
print(f"Error downloading the audio file: {e}")
|
45 |
-
return {"error": f"Error downloading the audio file: {e}"}
|
46 |
-
|
47 |
-
# Process the audio
|
48 |
-
try:
|
49 |
-
audio_input, _ = sf.read(audio_data) # Read the audio from the in-memory BytesIO
|
50 |
-
print(f"Audio file from URL successfully read.")
|
51 |
-
except Exception as e:
|
52 |
-
print(f"Error reading the audio file: {e}")
|
53 |
-
return {"error": f"Error reading the audio file: {e}"}
|
54 |
-
|
55 |
-
# Preprocess the audio for Whisper
|
56 |
-
try:
|
57 |
-
inputs = processor(audio_input, return_tensors="pt", sampling_rate=16000)
|
58 |
-
print(f"Audio file preprocessed for transcription.")
|
59 |
-
except Exception as e:
|
60 |
-
print(f"Error processing the audio file: {e}")
|
61 |
-
return {"error": f"Error processing the audio file: {e}"}
|
62 |
|
63 |
-
|
64 |
-
|
65 |
-
print("Inputs moved to the appropriate device.")
|
66 |
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
predicted_ids = model.generate(inputs["input_features"])
|
71 |
-
print("Transcription successfully generated.")
|
72 |
-
except Exception as e:
|
73 |
-
print(f"Error during transcription generation: {e}")
|
74 |
-
return {"error": f"Error during transcription generation: {e}"}
|
75 |
|
76 |
-
|
77 |
-
|
78 |
-
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)[0]
|
79 |
-
print("Transcription successfully decoded.")
|
80 |
-
except Exception as e:
|
81 |
-
print(f"Error decoding the transcription: {e}")
|
82 |
-
return {"error": f"Error decoding the transcription: {e}"}
|
83 |
|
84 |
-
|
|
|
|
|
85 |
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
|
90 |
-
|
91 |
-
|
92 |
-
print("Starting FastAPI server with Uvicorn...")
|
93 |
|
94 |
-
|
95 |
-
|
|
|
1 |
import torch
|
2 |
from transformers import WhisperProcessor, WhisperForConditionalGeneration
|
|
|
|
|
|
|
3 |
import requests
|
4 |
+
import soundfile as sf
|
5 |
+
import io
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
+
# Load the Whisper model and processor from Hugging Face Model Hub
|
8 |
model_name = "openai/whisper-base"
|
9 |
+
processor = WhisperProcessor.from_pretrained(model_name)
|
10 |
+
model = WhisperForConditionalGeneration.from_pretrained(model_name)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
+
# Use GPU if available, otherwise use CPU
|
13 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
14 |
model.to(device)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
+
# URL of the audio file
|
17 |
+
audio_url = "https://www.signalogic.com/melp/EngSamples/Orig/male.wav"
|
|
|
18 |
|
19 |
+
# Download the audio file
|
20 |
+
response = requests.get(audio_url)
|
21 |
+
audio_data = io.BytesIO(response.content)
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
+
# Read the audio using soundfile
|
24 |
+
audio_input, _ = sf.read(audio_data)
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
+
# Preprocess the audio for Whisper
|
27 |
+
inputs = processor(audio_input, return_tensors="pt", sampling_rate=16000)
|
28 |
+
inputs = {key: value.to(device) for key, value in inputs.items()}
|
29 |
|
30 |
+
# Generate the transcription
|
31 |
+
with torch.no_grad():
|
32 |
+
predicted_ids = model.generate(inputs["input_features"])
|
33 |
|
34 |
+
# Decode the transcription
|
35 |
+
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)[0]
|
|
|
36 |
|
37 |
+
# Print the transcription result
|
38 |
+
print("Transcription:", transcription)
|
requirements.txt
CHANGED
@@ -1,8 +1,6 @@
|
|
1 |
-
fastapi
|
2 |
-
uvicorn
|
3 |
torch
|
4 |
whisper
|
5 |
-
python-multipart
|
6 |
requests
|
7 |
transformers
|
8 |
soundfile
|
|
|
|
|
|
|
|
1 |
torch
|
2 |
whisper
|
|
|
3 |
requests
|
4 |
transformers
|
5 |
soundfile
|
6 |
+
|