Spaces:
Runtime error
Runtime error
GirishKiran
commited on
Commit
•
3ff622a
1
Parent(s):
6ae57aa
Upload app.py with huggingface_hub
Browse files
app.py
ADDED
@@ -0,0 +1,342 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
## required lib, required "pip install"
|
3 |
+
# import transformers
|
4 |
+
# import accelerate
|
5 |
+
import openai
|
6 |
+
import llama_index
|
7 |
+
import torch
|
8 |
+
import cryptography
|
9 |
+
import cryptography.fernet
|
10 |
+
## interface libs, required "pip install"
|
11 |
+
import gradio
|
12 |
+
import huggingface_hub
|
13 |
+
import huggingface_hub.hf_api
|
14 |
+
## standard libs, no need to install
|
15 |
+
import json
|
16 |
+
import requests
|
17 |
+
import time
|
18 |
+
import os
|
19 |
+
import random
|
20 |
+
import re
|
21 |
+
import sys
|
22 |
+
import psutil
|
23 |
+
import threading
|
24 |
+
import socket
|
25 |
+
# import PIL
|
26 |
+
# import pandas
|
27 |
+
import matplotlib
|
28 |
+
class HFace_Pluto(object):
|
29 |
+
#
|
30 |
+
# initialize the object
|
31 |
+
def __init__(self, name="Pluto",*args, **kwargs):
|
32 |
+
super(HFace_Pluto, self).__init__(*args, **kwargs)
|
33 |
+
self.author = "Duc Haba"
|
34 |
+
self.name = name
|
35 |
+
self._ph()
|
36 |
+
self._pp("Hello from class", str(self.__class__) + " Class: " + str(self.__class__.__name__))
|
37 |
+
self._pp("Code name", self.name)
|
38 |
+
self._pp("Author is", self.author)
|
39 |
+
self._ph()
|
40 |
+
#
|
41 |
+
# define class var for stable division
|
42 |
+
self._device = 'cuda'
|
43 |
+
self._steps = [3,8,21,55,89,144]
|
44 |
+
self._guidances = [1.1,3.0,5.0,8.0,13.0,21.0]
|
45 |
+
self._xkeyfile = '.xoxo'
|
46 |
+
self._models = []
|
47 |
+
self._seed = 667 # sum of walnut in ascii (or Angle 667)
|
48 |
+
self._width = 512
|
49 |
+
self._height = 512
|
50 |
+
self._step = 50
|
51 |
+
self._guidances = 7.5
|
52 |
+
self._llama_query_engine = None
|
53 |
+
self._llama_index_doc = None
|
54 |
+
#self._generator = torch.Generator(device='cuda')
|
55 |
+
self.pipes = []
|
56 |
+
self.prompts = []
|
57 |
+
self.images = []
|
58 |
+
self.seeds = []
|
59 |
+
self.fname_id = 0
|
60 |
+
self.dname_img = "img_colab/"
|
61 |
+
self._huggingface_key="gAAAAABkgtmOIjpnjwXFWmgh1j2et2kMjHUze-ym6h3BieAp34Sqkqv3EVYvRinETvpw-kXu7RSRl5_9FqrYe-7unfakMvMkU8nHrfB3hBSC76ZTXwkVSzlN0RfBNs9NL8BGjaSJ8mz8"
|
62 |
+
self._gpt_key="'gAAAAABkgtoTOLPegnxNIAfBfAda17h5HIHTS_65bobO3SdDlJam07AHGrcolvk9c6IWNJtTTxaCb8_JtWnLz0Y5h9doyfL-nJZggeQ6kLtaD4XwZYcG-AtYNNGCnJzVt9AaysPDnu-KWVhnJSe-DyH0oOO33doE0g=='"
|
63 |
+
self._fkey="=cvsOPRcWD6JONmdr4Sh6-PqF6nT1InYh965mI8f_sef"
|
64 |
+
self._color_primary = '#2780e3' #blue
|
65 |
+
self._color_secondary = '#373a3c' #dark gray
|
66 |
+
self._color_success = '#3fb618' #green
|
67 |
+
self._color_info = '#9954bb' #purple
|
68 |
+
self._color_warning = '#ff7518' #orange
|
69 |
+
self._color_danger = '#ff0039' #red
|
70 |
+
self._color_mid_gray = '#495057'
|
71 |
+
return
|
72 |
+
#
|
73 |
+
# pretty print output name-value line
|
74 |
+
def _pp(self, a, b,is_print=True):
|
75 |
+
# print("%34s : %s" % (str(a), str(b)))
|
76 |
+
x = f'{"%34s" % str(a)} : {str(b)}'
|
77 |
+
y = None
|
78 |
+
if (is_print):
|
79 |
+
print(x)
|
80 |
+
else:
|
81 |
+
y = x
|
82 |
+
return y
|
83 |
+
#
|
84 |
+
# pretty print the header or footer lines
|
85 |
+
def _ph(self,is_print=True):
|
86 |
+
x = f'{"-"*34} : {"-"*34}'
|
87 |
+
y = None
|
88 |
+
if (is_print):
|
89 |
+
print(x)
|
90 |
+
else:
|
91 |
+
y = x
|
92 |
+
return y
|
93 |
+
#
|
94 |
+
# fetch huggingface file
|
95 |
+
def fetch_hface_files(self,
|
96 |
+
hf_names,
|
97 |
+
hf_space="duchaba/monty",
|
98 |
+
local_dir="/content/"):
|
99 |
+
f = str(hf_names) + " is not iteratable, type: " + str(type(hf_names))
|
100 |
+
try:
|
101 |
+
for f in hf_names:
|
102 |
+
lo = local_dir + f
|
103 |
+
huggingface_hub.hf_hub_download(repo_id=hf_space, filename=f,
|
104 |
+
use_auth_token=True,repo_type=huggingface_hub.REPO_TYPE_SPACE,
|
105 |
+
force_filename=lo)
|
106 |
+
except:
|
107 |
+
self._pp("*Error", f)
|
108 |
+
return
|
109 |
+
#
|
110 |
+
#
|
111 |
+
def push_hface_files(self,
|
112 |
+
hf_names,
|
113 |
+
hf_space="duchaba/skin_cancer_diagnose",
|
114 |
+
local_dir="/content/"):
|
115 |
+
f = str(hf_names) + " is not iteratable, type: " + str(type(hf_names))
|
116 |
+
try:
|
117 |
+
for f in hf_names:
|
118 |
+
lo = local_dir + f
|
119 |
+
huggingface_hub.upload_file(
|
120 |
+
path_or_fileobj=lo,
|
121 |
+
path_in_repo=f,
|
122 |
+
repo_id=hf_space,
|
123 |
+
repo_type=huggingface_hub.REPO_TYPE_SPACE)
|
124 |
+
except Exception as e:
|
125 |
+
self._pp("*Error", e)
|
126 |
+
return
|
127 |
+
#
|
128 |
+
def push_hface_folder(self, hf_folder, hf_space_id, hf_dest_folder=None):
|
129 |
+
api = huggingface_hub.HfApi()
|
130 |
+
api.upload_folder(folder_path=hf_folder,
|
131 |
+
repo_id=hf_space_id,
|
132 |
+
path_in_repo=hf_dest_folder,
|
133 |
+
repo_type="space")
|
134 |
+
return
|
135 |
+
#
|
136 |
+
# Define a function to display available CPU and RAM
|
137 |
+
def fetch_system_info(self):
|
138 |
+
s=''
|
139 |
+
# Get CPU usage as a percentage
|
140 |
+
cpu_usage = psutil.cpu_percent()
|
141 |
+
# Get available memory in bytes
|
142 |
+
mem = psutil.virtual_memory()
|
143 |
+
# Convert bytes to gigabytes
|
144 |
+
mem_total_gb = mem.total / (1024 ** 3)
|
145 |
+
mem_available_gb = mem.available / (1024 ** 3)
|
146 |
+
mem_used_gb = mem.used / (1024 ** 3)
|
147 |
+
# Print the results
|
148 |
+
s += f"CPU usage: {cpu_usage}%\n"
|
149 |
+
s += f"Total memory: {mem_total_gb:.2f} GB\n"
|
150 |
+
s += f"Available memory: {mem_available_gb:.2f} GB\n"
|
151 |
+
# print(f"Used memory: {mem_used_gb:.2f} GB")
|
152 |
+
s += f"Memory usage: {mem_used_gb/mem_total_gb:.2f}%\n"
|
153 |
+
return s
|
154 |
+
#
|
155 |
+
def restart_script_periodically(self):
|
156 |
+
while True:
|
157 |
+
#random_time = random.randint(540, 600)
|
158 |
+
random_time = random.randint(15800, 21600)
|
159 |
+
time.sleep(random_time)
|
160 |
+
os.execl(sys.executable, sys.executable, *sys.argv)
|
161 |
+
return
|
162 |
+
#
|
163 |
+
def write_file(self,fname, txt):
|
164 |
+
f = open(fname, "w")
|
165 |
+
f.writelines("\n".join(txt))
|
166 |
+
f.close()
|
167 |
+
return
|
168 |
+
#
|
169 |
+
def fetch_gpu_info(self):
|
170 |
+
s=''
|
171 |
+
try:
|
172 |
+
s += f'Your GPU is the {torch.cuda.get_device_name(0)}\n'
|
173 |
+
s += f'GPU ready staus {torch.cuda.is_available()}\n'
|
174 |
+
s += f'GPU allocated RAM: {round(torch.cuda.memory_allocated(0)/1024**3,1)} GB\n'
|
175 |
+
s += f'GPU reserved RAM {round(torch.cuda.memory_reserved(0)/1024**3,1)} GB\n'
|
176 |
+
except Exception as e:
|
177 |
+
s += f'**Warning, No GPU: {e}'
|
178 |
+
return s
|
179 |
+
#
|
180 |
+
def _fetch_crypt(self,is_generate=False):
|
181 |
+
s=self._fkey[::-1]
|
182 |
+
if (is_generate):
|
183 |
+
s=open(self._xkeyfile, "rb").read()
|
184 |
+
return s
|
185 |
+
#
|
186 |
+
def _gen_key(self):
|
187 |
+
key = cryptography.fernet.Fernet.generate_key()
|
188 |
+
with open(self._xkeyfile, "wb") as key_file:
|
189 |
+
key_file.write(key)
|
190 |
+
return
|
191 |
+
#
|
192 |
+
def _decrypt_it(self, x):
|
193 |
+
y = self._fetch_crypt()
|
194 |
+
f = cryptography.fernet.Fernet(y)
|
195 |
+
m = f.decrypt(x)
|
196 |
+
return m.decode()
|
197 |
+
#
|
198 |
+
def _encrypt_it(self, x):
|
199 |
+
key = self._fetch_crypt()
|
200 |
+
p = x.encode()
|
201 |
+
f = cryptography.fernet.Fernet(key)
|
202 |
+
y = f.encrypt(p)
|
203 |
+
return y
|
204 |
+
#
|
205 |
+
def _login_hface(self):
|
206 |
+
huggingface_hub.login(self._decrypt_it(self._huggingface_key),
|
207 |
+
add_to_git_credential=True) # non-blocking login
|
208 |
+
self._ph()
|
209 |
+
return
|
210 |
+
#
|
211 |
+
def _fetch_version(self):
|
212 |
+
s = ''
|
213 |
+
# print(f"{'torch: 2.0.1':<25} Actual: {torch.__version__}")
|
214 |
+
# print(f"{'transformers: 4.29.2':<25} Actual: {transformers.__version__}")
|
215 |
+
s += f"{'openai: 0.27.7,':<28} Actual: {openai.__version__}\n"
|
216 |
+
s += f"{'huggingface_hub: 0.14.1,':<28} Actual: {huggingface_hub.__version__}\n"
|
217 |
+
s += f"{'gradio: 3.32.0,':<28} Actual: {gradio.__version__}\n"
|
218 |
+
s += f"{'cryptography: 3.34.0,':<28} Actual: {cryptography.__version__}\n"
|
219 |
+
s += f"{'llama_index: 0.6.21.post1,':<28} Actual: {llama_index.__version__}\n"
|
220 |
+
return s
|
221 |
+
#
|
222 |
+
def _fetch_host_ip(self):
|
223 |
+
s=''
|
224 |
+
hostname = socket.gethostname()
|
225 |
+
ip_address = socket.gethostbyname(hostname)
|
226 |
+
s += f"Hostname: {hostname}\n"
|
227 |
+
s += f"IP Address: {ip_address}\n"
|
228 |
+
return s
|
229 |
+
#
|
230 |
+
def _setup_openai(self,key=None):
|
231 |
+
if (key is None):
|
232 |
+
key = self._decrypt_it(self._gpt_key)
|
233 |
+
#
|
234 |
+
openai.api_key = key
|
235 |
+
os.environ["OPENAI_API_KEY"] = key
|
236 |
+
return
|
237 |
+
#
|
238 |
+
def _fetch_index_files(self,llama_ix):
|
239 |
+
res = []
|
240 |
+
x = llama_ix.ref_doc_info
|
241 |
+
for val in x.values():
|
242 |
+
jdata = json.loads(val.to_json())
|
243 |
+
fname = jdata['extra_info']['file_name']
|
244 |
+
res.append(fname)
|
245 |
+
# remove dublication name
|
246 |
+
res = list(set(res))
|
247 |
+
return res
|
248 |
+
# add module/method
|
249 |
+
#
|
250 |
+
import functools
|
251 |
+
def add_method(cls):
|
252 |
+
def decorator(func):
|
253 |
+
@functools.wraps(func)
|
254 |
+
def wrapper(*args, **kwargs):
|
255 |
+
return func(*args, **kwargs)
|
256 |
+
setattr(cls, func.__name__, wrapper)
|
257 |
+
return func # returning func means func can still be used normally
|
258 |
+
return decorator
|
259 |
+
#
|
260 |
+
monty = HFace_Pluto("Monty")
|
261 |
+
monty._login_hface()
|
262 |
+
print(monty._fetch_version())
|
263 |
+
monty._ph()
|
264 |
+
print(monty.fetch_system_info())
|
265 |
+
monty._ph()
|
266 |
+
print(monty.fetch_gpu_info())
|
267 |
+
monty._ph()
|
268 |
+
print(monty._fetch_host_ip())
|
269 |
+
monty._ph()
|
270 |
+
monty._setup_openai()
|
271 |
+
|
272 |
+
@add_method(HFace_Pluto)
|
273 |
+
def load_llama_index(self,vindex='vector_index',vpath='./index_storage'):
|
274 |
+
try:
|
275 |
+
storage_context = llama_index.StorageContext.from_defaults(persist_dir=vpath)
|
276 |
+
# load index
|
277 |
+
self._llama_index_doc = llama_index.load_index_from_storage(storage_context, index_id=vindex)
|
278 |
+
print(f'Index doc are: {self._fetch_index_files(self._llama_index_doc)}')
|
279 |
+
except Exception as e:
|
280 |
+
print('**Error: can not load index, check the index_storage directory or the GPT auth token')
|
281 |
+
print('If do not have index tokens then run the .gen_llama_index() function')
|
282 |
+
print(f'Exception: {e}')
|
283 |
+
return
|
284 |
+
|
285 |
+
monty.load_llama_index()
|
286 |
+
|
287 |
+
@add_method(HFace_Pluto)
|
288 |
+
def ask_me(self, p):
|
289 |
+
if (self._llama_query_engine is None):
|
290 |
+
self._llama_query_engine = self._llama_index_doc.as_query_engine()
|
291 |
+
resp = self._llama_query_engine.query(p)
|
292 |
+
return resp
|
293 |
+
|
294 |
+
in_box = [gradio.Textbox(lines=1, label="Your Humana request", placeholder="Your Humana request...see example if you need help.")
|
295 |
+
# ,gradio.Slider(0.0001, .05, value=0.001, step=.0001,label="Your Personalize Safer Value:")
|
296 |
+
]
|
297 |
+
out_box = [gradio.Textbox(label="Humana response:")
|
298 |
+
# ,gradio.Textbox(lines=4, label="Response Raw JSON Data:")
|
299 |
+
]
|
300 |
+
#
|
301 |
+
|
302 |
+
title = "Humana and YML Fine-tune LLM model"
|
303 |
+
desc = '*Note: This model is fine-tuned by YML using GPT3.5 as the base LLM.'
|
304 |
+
arti = '''
|
305 |
+
<ul><li>The documents for fine-tuning are:</li>
|
306 |
+
<li>Humana_ANOC_gold_plus_2023.pdf</li>
|
307 |
+
<li>Humana_profile_2023.pdf</li>
|
308 |
+
<li><i>**Note: You can add more documentation. The more documentation the model has the smarter it will be.</i></li>
|
309 |
+
</ul>
|
310 |
+
'''
|
311 |
+
exp = [
|
312 |
+
['Tell me the Humana Gold Plus plan.'],
|
313 |
+
['Please write a summary in bullet point of the Humana Gold Plus SNP-DE H0028-015 (HMO-POS D-SNP) Annual Notice of Changes for 2023.'],
|
314 |
+
['Compare the Humana monthly premium and maximum out-of-pocket for in-network and out-network.'],
|
315 |
+
['What is the maximum dollar value allowance for in-network over the counter drug?'],
|
316 |
+
['Write a newsletter introducing Humana Gold Plus plan, and target it to senior citizen demographic.'],
|
317 |
+
['Please write a summary about the Humana and Longevity Health Partner so that a teenage can understand.'],
|
318 |
+
['Tell me about the state agency contact information in bullet point.'],
|
319 |
+
['Please tell me more about the Humana Offer Free Counseling about Medicare and Medicaid'],
|
320 |
+
['Write four engaging tweets about the Humana Gold Plus plan.'],
|
321 |
+
['Tell me something funny about Humana.'],
|
322 |
+
['Is Humana is same as human?']
|
323 |
+
]
|
324 |
+
flag_options = ['Good :-)', 'Need Improvement', 'Wrong Answer']
|
325 |
+
|
326 |
+
# gradio.Interface(fn=monty.ask_me,
|
327 |
+
# inputs=in_box,
|
328 |
+
# outputs=out_box,
|
329 |
+
# examples=exp,
|
330 |
+
# title=title,
|
331 |
+
# description=desc,
|
332 |
+
# article=arti,
|
333 |
+
# # cache_examples=True,
|
334 |
+
# flagging_options=flag_options).launch()
|
335 |
+
|
336 |
+
gradio.Interface(fn=monty.ask_me,
|
337 |
+
inputs=in_box,
|
338 |
+
outputs=out_box,
|
339 |
+
examples=exp,
|
340 |
+
title=title,
|
341 |
+
description=desc,
|
342 |
+
article=arti).launch(share=True)
|