Spaces:
Sleeping
Sleeping
File size: 17,160 Bytes
a1af661 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 |
import argparse
import os
import random
import string
import sys
import pandas as pd
from datetime import datetime
sys.path.append("../")
import numpy as np
import torch
import lightgbm as lgb
import sklearn.metrics as metrics
from sklearn.utils import class_weight
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score, precision_recall_curve, f1_score, precision_recall_fscore_support,roc_auc_score
from torch.utils.data import DataLoader
from tqdm.auto import tqdm
from transformers import EsmTokenizer, EsmForMaskedLM, BertModel, BertTokenizer, AutoTokenizer, EsmModel
from utils.downstream_disgenet import DisGeNETProcessor
from utils.metric_learning_models import GDA_Metric_Learning
def parse_config():
parser = argparse.ArgumentParser()
parser.add_argument('-f')
parser.add_argument("--step", type=int, default=0)
parser.add_argument(
"--save_model_path",
type=str,
default=None,
help="path of the pretrained disease model located",
)
parser.add_argument(
"--prot_encoder_path",
type=str,
default="facebook/esm2_t33_650M_UR50D",
#"facebook/galactica-6.7b", "Rostlab/prot_bert" “facebook/esm2_t33_650M_UR50D”
help="path/name of protein encoder model located",
)
parser.add_argument(
"--disease_encoder_path",
type=str,
default="microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext",
help="path/name of textual pre-trained language model",
)
parser.add_argument("--reduction_factor", type=int, default=8)
parser.add_argument(
"--loss",
help="{ms_loss|infoNCE|cosine_loss|circle_loss|triplet_loss}}",
default="infoNCE",
)
parser.add_argument(
"--input_feature_save_path",
type=str,
default="../../data/processed_disease",
help="path of tokenized training data",
)
parser.add_argument(
"--agg_mode", default="mean_all_tok", type=str, help="{cls|mean|mean_all_tok}"
)
parser.add_argument("--batch_size", type=int, default=256)
parser.add_argument("--patience", type=int, default=5)
parser.add_argument("--num_leaves", type=int, default=5)
parser.add_argument("--max_depth", type=int, default=5)
parser.add_argument("--lr", type=float, default=0.35)
parser.add_argument("--dropout", type=float, default=0.1)
parser.add_argument("--test", type=int, default=0)
parser.add_argument("--use_miner", action="store_true")
parser.add_argument("--miner_margin", default=0.2, type=float)
parser.add_argument("--freeze_prot_encoder", action="store_true")
parser.add_argument("--freeze_disease_encoder", action="store_true")
parser.add_argument("--use_adapter", action="store_true")
parser.add_argument("--use_pooled", action="store_true")
parser.add_argument("--device", type=str, default="cpu")
parser.add_argument(
"--use_both_feature",
help="use the both features of gnn_feature_v1_samples and pretrained models",
action="store_true",
)
parser.add_argument(
"--use_v1_feature_only",
help="use the features of gnn_feature_v1_samples only",
action="store_true",
)
parser.add_argument(
"--save_path_prefix",
type=str,
default="../../save_model_ckp/finetune/",
help="save the result in which directory",
)
parser.add_argument(
"--save_name", default="fine_tune", type=str, help="the name of the saved file"
)
# Add argument for input CSV file path
parser.add_argument("--input_csv_path", type=str, required=True, help="Path to the input CSV file.")
# Add argument for output CSV file path
parser.add_argument("--output_csv_path", type=str, required=True, help="Path to the output CSV file.")
return parser.parse_args()
def get_feature(model, dataloader, args):
x = list()
y = list()
with torch.no_grad():
for step, batch in tqdm(enumerate(dataloader)):
prot_input_ids, prot_attention_mask, dis_input_ids, dis_attention_mask, y1 = batch
prot_input = {
'input_ids': prot_input_ids.to(args.device),
'attention_mask': prot_attention_mask.to(args.device)
}
dis_input = {
'input_ids': dis_input_ids.to(args.device),
'attention_mask': dis_attention_mask.to(args.device)
}
feature_output = model.predict(prot_input, dis_input)
x1 = feature_output.cpu().numpy()
x.append(x1)
y.append(y1.cpu().numpy())
x = np.concatenate(x, axis=0)
y = np.concatenate(y, axis=0)
return x, y
def encode_pretrained_feature(args, disGeNET):
input_feat_file = os.path.join(
args.input_feature_save_path,
f"{args.model_short}_{args.step}_use_{'pooled' if args.use_pooled else 'cls'}_feat.npz",
)
if os.path.exists(input_feat_file):
print(f"load prior feature data from {input_feat_file}.")
loaded = np.load(input_feat_file)
x_train, y_train = loaded["x_train"], loaded["y_train"]
x_valid, y_valid = loaded["x_valid"], loaded["y_valid"]
# x_test, y_test = loaded["x_test"], loaded["y_test"]
prot_tokenizer = EsmTokenizer.from_pretrained(args.prot_encoder_path, do_lower_case=False)
# prot_tokenizer = BertTokenizer.from_pretrained(args.prot_encoder_path, do_lower_case=False)
print("prot_tokenizer", len(prot_tokenizer))
disease_tokenizer = BertTokenizer.from_pretrained(args.disease_encoder_path)
print("disease_tokenizer", len(disease_tokenizer))
prot_model = EsmModel.from_pretrained(args.prot_encoder_path)
# prot_model = BertModel.from_pretrained(args.prot_encoder_path)
disease_model = BertModel.from_pretrained(args.disease_encoder_path)
if args.save_model_path:
model = GDA_Metric_Learning(prot_model, disease_model, 1280, 768, args)
if args.use_adapter:
prot_model_path = os.path.join(
args.save_model_path, f"prot_adapter_step_{args.step}"
)
disease_model_path = os.path.join(
args.save_model_path, f"disease_adapter_step_{args.step}"
)
model.load_adapters(prot_model_path, disease_model_path)
else:
prot_model_path = os.path.join(
args.save_model_path, f"step_{args.step}_model.bin"
)# , f"step_{args.step}_model.bin"
disease_model_path = os.path.join(
args.save_model_path, f"step_{args.step}_model.bin"
)
model.non_adapters(prot_model_path, disease_model_path)
model = model.to(args.device)
prot_model = model.prot_encoder
disease_model = model.disease_encoder
print(f"loaded prior model {args.save_model_path}.")
def collate_fn_batch_encoding(batch):
query1, query2, scores = zip(*batch)
query_encodings1 = prot_tokenizer.batch_encode_plus(
list(query1),
max_length=512,
padding="max_length",
truncation=True,
add_special_tokens=True,
return_tensors="pt",
)
query_encodings2 = disease_tokenizer.batch_encode_plus(
list(query2),
max_length=512,
padding="max_length",
truncation=True,
add_special_tokens=True,
return_tensors="pt",
)
scores = torch.tensor(list(scores))
attention_mask1 = query_encodings1["attention_mask"].bool()
attention_mask2 = query_encodings2["attention_mask"].bool()
return query_encodings1["input_ids"], attention_mask1, query_encodings2["input_ids"], attention_mask2, scores
test_examples = disGeNET.get_test_examples(args.test)
print(f"get test examples: {len(test_examples)}")
test_dataloader = DataLoader(
test_examples,
batch_size=args.batch_size,
shuffle=False,
collate_fn=collate_fn_batch_encoding,
)
print( f"dataset loaded: test-{len(test_examples)}")
x_test, y_test = get_feature(model, test_dataloader, args)
else:
prot_tokenizer = EsmTokenizer.from_pretrained(args.prot_encoder_path, do_lower_case=False)
# prot_tokenizer = BertTokenizer.from_pretrained(args.prot_encoder_path, do_lower_case=False)
print("prot_tokenizer", len(prot_tokenizer))
disease_tokenizer = BertTokenizer.from_pretrained(args.disease_encoder_path)
print("disease_tokenizer", len(disease_tokenizer))
prot_model = EsmModel.from_pretrained(args.prot_encoder_path)
# prot_model = BertModel.from_pretrained(args.prot_encoder_path)
disease_model = BertModel.from_pretrained(args.disease_encoder_path)
if args.save_model_path:
model = GDA_Metric_Learning(prot_model, disease_model, 1280, 768, args)
if args.use_adapter:
prot_model_path = os.path.join(
args.save_model_path, f"prot_adapter_step_{args.step}"
)
disease_model_path = os.path.join(
args.save_model_path, f"disease_adapter_step_{args.step}"
)
model.load_adapters(prot_model_path, disease_model_path)
else:
prot_model_path = os.path.join(
args.save_model_path, f"step_{args.step}_model.bin"
)# , f"step_{args.step}_model.bin"
disease_model_path = os.path.join(
args.save_model_path, f"step_{args.step}_model.bin"
)
model.non_adapters(prot_model_path, disease_model_path)
model = model.to(args.device)
prot_model = model.prot_encoder
disease_model = model.disease_encoder
print(f"loaded prior model {args.save_model_path}.")
def collate_fn_batch_encoding(batch):
query1, query2, scores = zip(*batch)
query_encodings1 = prot_tokenizer.batch_encode_plus(
list(query1),
max_length=512,
padding="max_length",
truncation=True,
add_special_tokens=True,
return_tensors="pt",
)
query_encodings2 = disease_tokenizer.batch_encode_plus(
list(query2),
max_length=512,
padding="max_length",
truncation=True,
add_special_tokens=True,
return_tensors="pt",
)
scores = torch.tensor(list(scores))
attention_mask1 = query_encodings1["attention_mask"].bool()
attention_mask2 = query_encodings2["attention_mask"].bool()
return query_encodings1["input_ids"], attention_mask1, query_encodings2["input_ids"], attention_mask2, scores
train_examples = disGeNET.get_train_examples(args.test)
print(f"get training examples: {len(train_examples)}")
valid_examples = disGeNET.get_val_examples(args.test)
print(f"get validation examples: {len(valid_examples)}")
test_examples = disGeNET.get_test_examples(args.test)
print(f"get test examples: {len(test_examples)}")
train_dataloader = DataLoader(
train_examples,
batch_size=args.batch_size,
shuffle=False,
collate_fn=collate_fn_batch_encoding,
)
valid_dataloader = DataLoader(
valid_examples,
batch_size=args.batch_size,
shuffle=False,
collate_fn=collate_fn_batch_encoding,
)
test_dataloader = DataLoader(
test_examples,
batch_size=args.batch_size,
shuffle=False,
collate_fn=collate_fn_batch_encoding,
)
print( f"dataset loaded: train-{len(train_examples)}; valid-{len(valid_examples)}; test-{len(test_examples)}")
x_train, y_train = get_feature(model, train_dataloader, args)
x_valid, y_valid = get_feature(model, valid_dataloader, args)
x_test, y_test = get_feature(model, test_dataloader, args)
# Save input feature to reduce encoding time
np.savez_compressed(
input_feat_file,
x_train=x_train,
y_train=y_train,
x_valid=x_valid,
y_valid=y_valid,
)
print(f"save input feature into {input_feat_file}")
# Save input feature to reduce encoding time
return x_train, y_train, x_valid, y_valid, x_test, y_test
def train(args):
# defining parameters
if args.save_model_path:
args.model_short = (
args.save_model_path.split("/")[-1]
)
print(f"model name {args.model_short}")
else:
args.model_short = (
args.disease_encoder_path.split("/")[-1]
)
print(f"model name {args.model_short}")
# disGeNET = DisGeNETProcessor()
disGeNET = DisGeNETProcessor(input_csv_path=args.input_csv_path)
x_train, y_train, x_valid, y_valid, x_test, y_test = encode_pretrained_feature(args, disGeNET)
print("train: ", x_train.shape, y_train.shape)
print("valid: ", x_valid.shape, y_valid.shape)
print("test: ", x_test.shape, y_test.shape)
params = {
"task": "train", # "predict" train
"boosting": "gbdt", # "The options are "gbdt" (traditional Gradient Boosting Decision Tree), "rf" (Random Forest), "dart" (Dropouts meet Multiple Additive Regression Trees), or "goss" (Gradient-based One-Side Sampling). The default is "gbdt"."
"objective": "binary",
"num_leaves": args.num_leaves,
"early_stopping_round": 30,
"max_depth": args.max_depth,
"learning_rate": args.lr,
"metric": "binary_logloss", #"metric": "l2","binary_logloss" "auc"
"verbose": 1,
}
lgb_train = lgb.Dataset(x_train, y_train)
lgb_valid = lgb.Dataset(x_valid, y_valid)
lgb_eval = lgb.Dataset(x_test, y_test, reference=lgb_train)
# fitting the model
model = lgb.train(
params, train_set=lgb_train, valid_sets=lgb_valid)
# prediction
valid_y_pred = model.predict(x_valid)
test_y_pred = model.predict(x_test)
# predict liver fibrosis
predictions_df = pd.DataFrame(test_y_pred, columns=["Prediction_score"])
# data_test = pd.read_csv('/nfs/dpa_pretrain/data/downstream/GDA_Data/test_tdc.csv')
data_test = pd.read_csv(args.input_csv_path)
predictions = pd.concat([data_test, predictions_df], axis=1)
# filtered_dataset = test_dataset_with_predictions[test_dataset_with_predictions['diseaseId'] == 'C0009714']
predictions.sort_values(by='Prediction_score', ascending=False, inplace=True)
top_100_predictions = predictions.head(100)
top_100_predictions.to_csv(args.output_csv_path, index=False)
# Accuracy
y_pred = model.predict(x_test, num_iteration=model.best_iteration)
y_pred[y_pred >= 0.5] = 1
y_pred[y_pred < 0.5] = 0
accuracy = accuracy_score(y_test, y_pred)
# AUC
valid_roc_auc_score = metrics.roc_auc_score(y_valid, valid_y_pred)
valid_average_precision_score = metrics.average_precision_score(
y_valid, valid_y_pred
)
test_roc_auc_score = metrics.roc_auc_score(y_test, test_y_pred)
test_average_precision_score = metrics.average_precision_score(y_test, test_y_pred)
# AUPR
valid_aupr = metrics.average_precision_score(y_valid, valid_y_pred)
test_aupr = metrics.average_precision_score(y_test, test_y_pred)
# Fmax
valid_precision, valid_recall, valid_thresholds = precision_recall_curve(y_valid, valid_y_pred)
valid_fmax = (2 * valid_precision * valid_recall / (valid_precision + valid_recall)).max()
test_precision, test_recall, test_thresholds = precision_recall_curve(y_test, test_y_pred)
test_fmax = (2 * test_precision * test_recall / (test_precision + test_recall)).max()
# F1
valid_f1 = f1_score(y_valid, valid_y_pred >= 0.5)
test_f1 = f1_score(y_test, test_y_pred >= 0.5)
if __name__ == "__main__":
args = parse_config()
if torch.cuda.is_available():
print("cuda is available.")
print(f"current device {args}.")
else:
args.device = "cpu"
timestamp_str = datetime.now().strftime("%Y%m%d_%H%M%S")
random_str = "".join([random.choice(string.ascii_lowercase) for n in range(6)])
best_model_dir = (
f"{args.save_path_prefix}{args.save_name}_{timestamp_str}_{random_str}/"
)
os.makedirs(best_model_dir)
args.save_name = best_model_dir
train(args)
|