File size: 17,160 Bytes
a1af661
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
import argparse
import os
import random
import string
import sys
import pandas as pd
from datetime import datetime

sys.path.append("../")
import numpy as np
import torch
import lightgbm as lgb
import sklearn.metrics as metrics
from sklearn.utils import class_weight
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score, precision_recall_curve, f1_score, precision_recall_fscore_support,roc_auc_score
from torch.utils.data import DataLoader
from tqdm.auto import tqdm
from transformers import EsmTokenizer, EsmForMaskedLM, BertModel, BertTokenizer, AutoTokenizer, EsmModel
from utils.downstream_disgenet import DisGeNETProcessor
from utils.metric_learning_models import GDA_Metric_Learning

def parse_config():
    parser = argparse.ArgumentParser()
    parser.add_argument('-f')
    parser.add_argument("--step", type=int, default=0)
    parser.add_argument(
        "--save_model_path",
        type=str,
        default=None,
        help="path of the pretrained disease model located",
    )
    parser.add_argument(
        "--prot_encoder_path",
        type=str,
        default="facebook/esm2_t33_650M_UR50D",     
        #"facebook/galactica-6.7b", "Rostlab/prot_bert"  “facebook/esm2_t33_650M_UR50D”
        help="path/name of protein encoder model located",
    )
    parser.add_argument(
        "--disease_encoder_path",
        type=str,
        default="microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext",
        help="path/name of textual pre-trained language model",
    )
    parser.add_argument("--reduction_factor", type=int, default=8)
    parser.add_argument(
        "--loss",
        help="{ms_loss|infoNCE|cosine_loss|circle_loss|triplet_loss}}",
        default="infoNCE",
    )
    parser.add_argument(
        "--input_feature_save_path",
        type=str,
        default="../../data/processed_disease",
        help="path of tokenized training data",
    )
    parser.add_argument(
        "--agg_mode", default="mean_all_tok", type=str, help="{cls|mean|mean_all_tok}"
    )
    parser.add_argument("--batch_size", type=int, default=256)
    parser.add_argument("--patience", type=int, default=5)
    parser.add_argument("--num_leaves", type=int, default=5)
    parser.add_argument("--max_depth", type=int, default=5)
    parser.add_argument("--lr", type=float, default=0.35)
    parser.add_argument("--dropout", type=float, default=0.1)
    parser.add_argument("--test", type=int, default=0)
    parser.add_argument("--use_miner", action="store_true")
    parser.add_argument("--miner_margin", default=0.2, type=float)
    parser.add_argument("--freeze_prot_encoder", action="store_true")
    parser.add_argument("--freeze_disease_encoder", action="store_true")
    parser.add_argument("--use_adapter", action="store_true")
    parser.add_argument("--use_pooled", action="store_true")
    parser.add_argument("--device", type=str, default="cpu")
    parser.add_argument(
        "--use_both_feature",
        help="use the both features of gnn_feature_v1_samples and pretrained models",
        action="store_true",
    )
    parser.add_argument(
        "--use_v1_feature_only",
        help="use the features of gnn_feature_v1_samples only",
        action="store_true",
    )
    parser.add_argument(
        "--save_path_prefix",
        type=str,
        default="../../save_model_ckp/finetune/",
        help="save the result in which directory",
    )
    parser.add_argument(
        "--save_name", default="fine_tune", type=str, help="the name of the saved file"
    )
    # Add argument for input CSV file path
    parser.add_argument("--input_csv_path", type=str, required=True, help="Path to the input CSV file.")

    # Add argument for output CSV file path
    parser.add_argument("--output_csv_path", type=str, required=True, help="Path to the output CSV file.")
    return parser.parse_args()

def get_feature(model, dataloader, args):
    x = list()
    y = list()
    with torch.no_grad():
        for step, batch in tqdm(enumerate(dataloader)):
            prot_input_ids, prot_attention_mask, dis_input_ids, dis_attention_mask, y1 = batch
            prot_input = {
                'input_ids': prot_input_ids.to(args.device), 
                'attention_mask': prot_attention_mask.to(args.device)
            }
            dis_input = {
                'input_ids': dis_input_ids.to(args.device), 
                'attention_mask': dis_attention_mask.to(args.device)
            }
            feature_output = model.predict(prot_input, dis_input)
            x1 = feature_output.cpu().numpy()
            x.append(x1)
            y.append(y1.cpu().numpy())
    x = np.concatenate(x, axis=0)
    y = np.concatenate(y, axis=0)
    return x, y


def encode_pretrained_feature(args, disGeNET):
    input_feat_file = os.path.join(
        args.input_feature_save_path,
        f"{args.model_short}_{args.step}_use_{'pooled' if args.use_pooled else 'cls'}_feat.npz",
    )

    if os.path.exists(input_feat_file):
        print(f"load prior feature data from {input_feat_file}.")
        loaded = np.load(input_feat_file)
        x_train, y_train = loaded["x_train"], loaded["y_train"]
        x_valid, y_valid = loaded["x_valid"], loaded["y_valid"]
        # x_test, y_test = loaded["x_test"], loaded["y_test"]
        
        prot_tokenizer = EsmTokenizer.from_pretrained(args.prot_encoder_path, do_lower_case=False)
        # prot_tokenizer = BertTokenizer.from_pretrained(args.prot_encoder_path, do_lower_case=False)
        print("prot_tokenizer", len(prot_tokenizer))
        disease_tokenizer = BertTokenizer.from_pretrained(args.disease_encoder_path)
        print("disease_tokenizer", len(disease_tokenizer))

        prot_model = EsmModel.from_pretrained(args.prot_encoder_path)
        # prot_model = BertModel.from_pretrained(args.prot_encoder_path)
        disease_model = BertModel.from_pretrained(args.disease_encoder_path)
        
        if args.save_model_path:
            model = GDA_Metric_Learning(prot_model, disease_model, 1280, 768, args)

            if args.use_adapter:
                prot_model_path = os.path.join(
                    args.save_model_path, f"prot_adapter_step_{args.step}"
                )
                disease_model_path = os.path.join(
                    args.save_model_path, f"disease_adapter_step_{args.step}"
                )
                model.load_adapters(prot_model_path, disease_model_path)
            else:
                prot_model_path = os.path.join(
                    args.save_model_path, f"step_{args.step}_model.bin"
                )# , f"step_{args.step}_model.bin"
                disease_model_path = os.path.join(
                    args.save_model_path, f"step_{args.step}_model.bin"
                )
                model.non_adapters(prot_model_path, disease_model_path)
                
            model = model.to(args.device)
            prot_model = model.prot_encoder
            disease_model = model.disease_encoder
            print(f"loaded prior model {args.save_model_path}.")
            
        def collate_fn_batch_encoding(batch):
            query1, query2, scores = zip(*batch)
            
            query_encodings1 = prot_tokenizer.batch_encode_plus(
                list(query1),
                max_length=512,
                padding="max_length",
                truncation=True,
                add_special_tokens=True,
                return_tensors="pt",
            )
            query_encodings2 = disease_tokenizer.batch_encode_plus(
                list(query2),
                max_length=512,
                padding="max_length",
                truncation=True,
                add_special_tokens=True,
                return_tensors="pt",
            )
            scores = torch.tensor(list(scores))
            attention_mask1 = query_encodings1["attention_mask"].bool()
            attention_mask2 = query_encodings2["attention_mask"].bool()
            
            return query_encodings1["input_ids"], attention_mask1, query_encodings2["input_ids"], attention_mask2, scores

        test_examples = disGeNET.get_test_examples(args.test)
        print(f"get test examples: {len(test_examples)}")
        
        test_dataloader = DataLoader(
            test_examples,
            batch_size=args.batch_size,
            shuffle=False,
            collate_fn=collate_fn_batch_encoding,
        )
        print( f"dataset loaded: test-{len(test_examples)}")

        x_test, y_test = get_feature(model, test_dataloader, args)

    else:
        prot_tokenizer = EsmTokenizer.from_pretrained(args.prot_encoder_path, do_lower_case=False)
        # prot_tokenizer = BertTokenizer.from_pretrained(args.prot_encoder_path, do_lower_case=False)
        print("prot_tokenizer", len(prot_tokenizer))
        disease_tokenizer = BertTokenizer.from_pretrained(args.disease_encoder_path)
        print("disease_tokenizer", len(disease_tokenizer))

        prot_model = EsmModel.from_pretrained(args.prot_encoder_path)
        # prot_model = BertModel.from_pretrained(args.prot_encoder_path)
        disease_model = BertModel.from_pretrained(args.disease_encoder_path)
        
        if args.save_model_path:
            model = GDA_Metric_Learning(prot_model, disease_model, 1280, 768, args)

            if args.use_adapter:
                prot_model_path = os.path.join(
                    args.save_model_path, f"prot_adapter_step_{args.step}"
                )
                disease_model_path = os.path.join(
                    args.save_model_path, f"disease_adapter_step_{args.step}"
                )
                model.load_adapters(prot_model_path, disease_model_path)
            else:
                prot_model_path = os.path.join(
                    args.save_model_path, f"step_{args.step}_model.bin"
                )# , f"step_{args.step}_model.bin"
                disease_model_path = os.path.join(
                    args.save_model_path, f"step_{args.step}_model.bin"
                )
                model.non_adapters(prot_model_path, disease_model_path)
                
            model = model.to(args.device)
            prot_model = model.prot_encoder
            disease_model = model.disease_encoder
            print(f"loaded prior model {args.save_model_path}.")
            
        def collate_fn_batch_encoding(batch):
            query1, query2, scores = zip(*batch)
            
            query_encodings1 = prot_tokenizer.batch_encode_plus(
                list(query1),
                max_length=512,
                padding="max_length",
                truncation=True,
                add_special_tokens=True,
                return_tensors="pt",
            )
            query_encodings2 = disease_tokenizer.batch_encode_plus(
                list(query2),
                max_length=512,
                padding="max_length",
                truncation=True,
                add_special_tokens=True,
                return_tensors="pt",
            )
            scores = torch.tensor(list(scores))
            attention_mask1 = query_encodings1["attention_mask"].bool()
            attention_mask2 = query_encodings2["attention_mask"].bool()
            
            return query_encodings1["input_ids"], attention_mask1, query_encodings2["input_ids"], attention_mask2, scores
        
        train_examples = disGeNET.get_train_examples(args.test)
        print(f"get training examples: {len(train_examples)}")
        valid_examples = disGeNET.get_val_examples(args.test)
        print(f"get validation examples: {len(valid_examples)}")
        test_examples = disGeNET.get_test_examples(args.test)
        print(f"get test examples: {len(test_examples)}")

        train_dataloader = DataLoader(
            train_examples,
            batch_size=args.batch_size,
            shuffle=False,
            collate_fn=collate_fn_batch_encoding,
        )
        valid_dataloader = DataLoader(
            valid_examples,
            batch_size=args.batch_size,
            shuffle=False,
            collate_fn=collate_fn_batch_encoding,
        )
        test_dataloader = DataLoader(
            test_examples,
            batch_size=args.batch_size,
            shuffle=False,
            collate_fn=collate_fn_batch_encoding,
        )
        print( f"dataset loaded: train-{len(train_examples)}; valid-{len(valid_examples)}; test-{len(test_examples)}")
        
        x_train, y_train = get_feature(model, train_dataloader, args)
        x_valid, y_valid = get_feature(model, valid_dataloader, args)
        x_test, y_test = get_feature(model, test_dataloader, args)

        # Save input feature to reduce encoding time
        np.savez_compressed(
            input_feat_file,
            x_train=x_train,
            y_train=y_train,
            x_valid=x_valid,
            y_valid=y_valid,
        )
        print(f"save input feature into {input_feat_file}")
        # Save input feature to reduce encoding time
    return x_train, y_train, x_valid, y_valid, x_test, y_test


def train(args):
    # defining parameters
    if args.save_model_path:
        args.model_short = (
            args.save_model_path.split("/")[-1]
        )
        print(f"model name {args.model_short}")

    else:
        args.model_short = (
            args.disease_encoder_path.split("/")[-1] 
        )
        print(f"model name {args.model_short}")

    # disGeNET = DisGeNETProcessor()
    disGeNET = DisGeNETProcessor(input_csv_path=args.input_csv_path)

         
    x_train, y_train, x_valid, y_valid, x_test, y_test = encode_pretrained_feature(args, disGeNET)

    print("train: ", x_train.shape, y_train.shape)
    print("valid: ", x_valid.shape, y_valid.shape)
    print("test: ", x_test.shape, y_test.shape)
    
    params = {
        "task": "train",  # "predict"   train
        "boosting": "gbdt", # "The options are "gbdt" (traditional Gradient Boosting Decision Tree), "rf" (Random Forest), "dart" (Dropouts meet Multiple Additive Regression Trees), or "goss" (Gradient-based One-Side Sampling). The default is "gbdt"."
        "objective": "binary",
        "num_leaves": args.num_leaves,
        "early_stopping_round": 30,
        "max_depth": args.max_depth,
        "learning_rate": args.lr,
        "metric": "binary_logloss", #"metric": "l2","binary_logloss"  "auc"
        "verbose": 1,
    }  
    
    lgb_train = lgb.Dataset(x_train, y_train) 
    lgb_valid = lgb.Dataset(x_valid, y_valid)
    lgb_eval = lgb.Dataset(x_test, y_test, reference=lgb_train)

    # fitting the model
    model = lgb.train(
        params, train_set=lgb_train, valid_sets=lgb_valid)
    
    # prediction
    valid_y_pred = model.predict(x_valid)
    test_y_pred = model.predict(x_test)
    
    # predict liver fibrosis
    predictions_df = pd.DataFrame(test_y_pred, columns=["Prediction_score"])
    # data_test = pd.read_csv('/nfs/dpa_pretrain/data/downstream/GDA_Data/test_tdc.csv')
    data_test = pd.read_csv(args.input_csv_path)
    predictions = pd.concat([data_test, predictions_df], axis=1)
    # filtered_dataset = test_dataset_with_predictions[test_dataset_with_predictions['diseaseId'] == 'C0009714']
    predictions.sort_values(by='Prediction_score', ascending=False, inplace=True)
    top_100_predictions = predictions.head(100)
    top_100_predictions.to_csv(args.output_csv_path, index=False)
    
    # Accuracy
    y_pred = model.predict(x_test, num_iteration=model.best_iteration)
    y_pred[y_pred >= 0.5] = 1
    y_pred[y_pred < 0.5] = 0
    accuracy = accuracy_score(y_test, y_pred)
    
    # AUC
    valid_roc_auc_score = metrics.roc_auc_score(y_valid, valid_y_pred)
    valid_average_precision_score = metrics.average_precision_score(
        y_valid, valid_y_pred
    )
    test_roc_auc_score = metrics.roc_auc_score(y_test, test_y_pred)
    test_average_precision_score = metrics.average_precision_score(y_test, test_y_pred)
    
    # AUPR
    valid_aupr = metrics.average_precision_score(y_valid, valid_y_pred)
    test_aupr = metrics.average_precision_score(y_test, test_y_pred)

    # Fmax
    valid_precision, valid_recall, valid_thresholds = precision_recall_curve(y_valid, valid_y_pred)
    valid_fmax = (2 * valid_precision * valid_recall / (valid_precision + valid_recall)).max()
    test_precision, test_recall, test_thresholds = precision_recall_curve(y_test, test_y_pred)
    test_fmax = (2 * test_precision * test_recall / (test_precision + test_recall)).max()

    # F1
    valid_f1 = f1_score(y_valid, valid_y_pred >= 0.5)
    test_f1 = f1_score(y_test, test_y_pred >= 0.5)


if __name__ == "__main__":
    args = parse_config()
    if torch.cuda.is_available():
        print("cuda is available.")
        print(f"current device {args}.")
    else:
        args.device = "cpu"
    timestamp_str = datetime.now().strftime("%Y%m%d_%H%M%S")
    random_str = "".join([random.choice(string.ascii_lowercase) for n in range(6)])
    best_model_dir = (
        f"{args.save_path_prefix}{args.save_name}_{timestamp_str}_{random_str}/"
    )
    os.makedirs(best_model_dir)
    args.save_name = best_model_dir
    train(args)