File size: 12,403 Bytes
a1af661
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
import logging
import sys
import numpy as np
sys.path.append("../")
# from tdc.multi_pred import GDA
import pandas as pd
from torch.utils.data import Dataset

LOGGER = logging.getLogger(__name__)

class GDA_Dataset(Dataset):
    """
    Candidate Dataset for:
        ALL gene-to-disease interactions
    """ 
    def __init__(self, data_examples):
        self.protein_seqs = data_examples[0]
        self.disease_dess = data_examples[1]
        self.scores = data_examples[2]

    def __getitem__(self, query_idx):

        protein_seq = self.protein_seqs[query_idx]
        disease_des = self.disease_dess[query_idx]
        score = self.scores[query_idx]

        return protein_seq, disease_des, score

    def __len__(self):
        return len(self.protein_seqs)


class TDC_Pretrain_Dataset(Dataset):
    """
        Dataset of TDC:
            ALL gene-disease associations
    """
    def __init__(self, data_dir="../../data/pretrain/", test=False):
        LOGGER.info("Initializing TDC Pretraining Dataset ! ...")
        
        data = GDA(name="DisGeNET")  # , path=data_dir
        data.neg_sample(frac = 1)
        data.binarize(threshold = 0, order = 'ascending')
        self.datasets = data.get_split()
        self.name = "DisGeNET"
        self.dataset_df = self.datasets['train']
        # self.dataset_df = pd.read_csv(f"{data_dir}/disgenet_gda.csv")
        self.dataset_df = self.dataset_df[
            ["Gene", "Disease", "Y"]
        ].dropna()  # Drop missing values.
        # print(self.dataset_df.head())
        print(
            f"{data_dir}TDC training dataset loaded, found associations: {len(self.dataset_df.index)}"
        )
        self.protein_seqs = self.dataset_df["Gene"].values
        self.disease_dess = self.dataset_df["Disease"].values
        self.scores = len(self.dataset_df["Y"].values) * [1]

    def __getitem__(self, query_idx):

        protein_seq = self.protein_seqs[query_idx]
        disease_des = self.disease_dess[query_idx]
        score = self.scores[query_idx]

        return protein_seq, disease_des, score

    def __len__(self):
        return len(self.protein_seqs)

class GDA_Pretrain_Dataset(Dataset):
    """
    Candidate Dataset for:
        ALL gene-disease associations
    """

    def __init__(self, data_dir="../../data/pretrain/", test=False, split="train", val_ratio=0.2):
        LOGGER.info("Initializing GDA Pretraining Dataset ! ...")
        self.dataset_df = pd.read_csv(f"{data_dir}/disgenet_gda.csv")
        self.dataset_df = self.dataset_df[["proteinSeq", "diseaseDes", "score"]].dropna()
        self.dataset_df = self.dataset_df.sample(frac=1, random_state=42).reset_index(drop=True)

        num_val_samples = int(len(self.dataset_df) * val_ratio)
        if split == "train":
            self.dataset_df = self.dataset_df[:-num_val_samples]
            print(f"{data_dir}disgenet_gda.csv loaded, found train associations: {len(self.dataset_df.index)}")
        elif split == "val":
            self.dataset_df = self.dataset_df[-num_val_samples:]
            print(f"{data_dir}disgenet_gda.csv loaded, found valid associations: {len(self.dataset_df.index)}")
            
        if test:
            self.protein_seqs = self.dataset_df["proteinSeq"].values[:128]
            self.disease_dess = self.dataset_df["diseaseDes"].values[:128]
            self.scores = 128 * [1]
        else:
            self.protein_seqs = self.dataset_df["proteinSeq"].values
            self.disease_dess = self.dataset_df["diseaseDes"].values
            self.scores = len(self.dataset_df["score"].values) * [1]

    def __getitem__(self, query_idx):

        protein_seq = self.protein_seqs[query_idx]
        disease_des = self.disease_dess[query_idx]
        score = self.scores[query_idx]

        return protein_seq, disease_des, score

    def __len__(self):
        return len(self.protein_seqs)
#         # 分离正负样本
#         positive_samples = self.dataset_df[self.dataset_df["score"] == 1]
#         negative_samples = self.dataset_df[self.dataset_df["score"] == 0]

#         # 打乱并划分正样本
#         positive_samples = positive_samples.sample(frac=1, random_state=42).reset_index(drop=True)
#         num_pos_val_samples = int(len(positive_samples) * val_ratio)

#         # 打乱并划分负样本
#         negative_samples = negative_samples.sample(frac=1, random_state=42).reset_index(drop=True)
#         num_neg_val_samples = int(len(negative_samples) * val_ratio)

        # if split == "train":
        #     self.dataset_df = pd.concat([positive_samples[:-num_pos_val_samples], negative_samples[:-num_neg_val_samples]])
        #     print(f"{data_dir}disgenet_gda.csv loaded, found associations: {len(self.dataset_df.index)}")
        # elif split == "val":
        #     self.dataset_df = pd.concat([positive_samples[-num_pos_val_samples:], negative_samples[-num_neg_val_samples:]])
        #     print(f"{data_dir}disgenet_gda.csv loaded, found associations: {len(self.dataset_df.index)}")
        # Shuffle and split data

# class GDA_Pretrain_Dataset(Dataset):
#     """
#     Candidate Dataset for:
#         ALL gene-disease associations
#     """

#     def __init__(self, data_dir="../../data/pretrain/", test=False):
#         LOGGER.info("Initializing GDA Pretraining Dataset ! ...")
        # updated = pd.read_csv(f"{data_dir}/disgenet_updated.csv")     
        
        # data = GDA(name="DisGeNET")
        # data = data.get_data()
        # data = data[['Gene_ID','Disease_ID']].dropna()
        # self.dataset_df = pd.read_csv(f"{data_dir}/disgenet_gda.csv")
        
        # num_unique_diseaseId = self.dataset_df['diseaseId'].nunique()
        # num_unique_geneId = self.dataset_df['geneId'].nunique()

        # print(f"Number of unique 'diseaseId': {num_unique_diseaseId}")
        # print(f"Number of unique 'geneId': {num_unique_geneId}")
        
#         num_of_c0002395 = self.dataset_df[self.dataset_df['diseaseId'] == 'C0002395'].shape[0]
        # print(f"Alzheimer Number in 2020:{num_of_c0002395}")
        
        # Convert 'Gene_ID' and 'Disease_ID' to str before merge
        # data['Gene_ID'] = data['Gene_ID'].astype(str)
        # data['Disease_ID'] = data['Disease_ID'].astype(str)

        # Similarly for 'geneId' and 'diseaseId', if they're not already of type 'str'
        # self.dataset_df['geneId'] = self.dataset_df['geneId'].astype(str)
        # self.dataset_df['diseaseId'] = self.dataset_df['diseaseId'].astype(str)

#         # 合并两个DataFrame并找出不同的行
#         merged = df.merge(self.dataset_df, how='outer', indicator=True)
#         differences = merged[merged['_merge'] != 'both']

#         differences.to_csv('/nfs/dpa_pretrain/data/pretrain/differences.csv', index=False)

        
#         Check for overlap between TDC dataset and DisGeNET dataset
#         merged_df = pd.merge(data, self.dataset_df, how='inner', left_on=['Gene_ID','Disease_ID'], right_on=['geneId','diseaseId'])
        
#         num_matched_pairs = merged_df.shape[0]

#         print(f"Number of matched pairs TDC: {num_matched_pairs}")
        
#         merged_dis = pd.merge(data, updated, how='inner', left_on=['Gene','Disease'], right_on=['proteinSeq','diseaseDes'])
        
#         num_matched = merged_dis.shape[0]

#         print(f"Number of matched pairs DisGeNET_test: {num_matched}")
        
        # self.dataset_df = self.dataset_df[
        #     ["proteinSeq", "diseaseDes", "score"]
        # ].dropna()  # Drop missing values.
        # print(self.dataset_df.head())  "proteinSeq", "diseaseDes", "score"
        
        # print(
        #     f"{data_dir}disgenet_gda.csv loaded, found associations: {len(self.dataset_df.index)}"
        # )
#         df1 = pd.read_csv(f"{data_dir}/disgenet_gda.csv")
#         df1 = df1[
#             ["proteinSeq", "diseaseDes", "score"]
#         ].dropna()

#         # 合并两个DataFrame并找出不同的行
#         merged = df1.merge(self.dataset_df, how='outer', indicator=True)
#         differences = merged[merged['_merge'] != 'both']

#         # 将结果保存到新的文件中
#         differences.to_csv('/nfs/dpa_pretrain/data/pretrain/differences.csv', index=False)

#         if test:
#             self.protein_seqs = self.dataset_df["proteinSeq"].values[:128]
#             self.disease_dess = self.dataset_df["diseaseDes"].values[:128]
#             self.scores = 128 * [1]
#         else:
#             self.protein_seqs = self.dataset_df["proteinSeq"].values
#             self.disease_dess = self.dataset_df["diseaseDes"].values
#             self.scores = len(self.dataset_df["score"].values) * [1]

#     def __getitem__(self, query_idx):

#         protein_seq = self.protein_seqs[query_idx]
#         disease_des = self.disease_dess[query_idx]
#         score = self.scores[query_idx]

#         return protein_seq, disease_des, score

#     def __len__(self):
#         return len(self.protein_seqs)


class PPI_Pretrain_Dataset(Dataset):
    """
    Candidate Dataset for:
        ALL protein-to-protein interactions
    """

    def __init__(self, data_dir="../../data/pretrain/", test=False):
        LOGGER.info("Initializing metric learning data set! ...")
        self.dataset_df = pd.read_csv(f"{data_dir}/string_ppi_900_2m.csv")
        self.dataset_df = self.dataset_df[["item_seq_a", "item_seq_b", "score"]]
        self.dataset_df = self.dataset_df.dropna()
        if test:
            self.dataset_df = self.dataset_df.sample(100)
        print(
            f"{data_dir}/string_ppi_900_2m.csv loaded, found interactions: {len(self.dataset_df.index)}"
        )
        self.protein_seq1 = self.dataset_df["item_seq_a"].values
        self.protein_seq2 = self.dataset_df["item_seq_b"].values
        self.scores = len(self.dataset_df["score"].values) * [1]

    def __getitem__(self, query_idx):

        protein_seq1 = self.protein_seq1[query_idx]
        protein_seq2 = self.protein_seq2[query_idx]
        score = self.scores[query_idx]

        return protein_seq1, protein_seq2, score

    def __len__(self):
        return len(self.protein_seq1)


class PPI_Dataset(Dataset):
    """
    Candidate Dataset for:
        ALL protein-to-protein interactions
    """

    def __init__(self, protein_seq1, protein_seq2, score):
        self.protein_seq1 = protein_seq1
        self.protein_seq2 = protein_seq2
        self.scores = score

    def __getitem__(self, query_idx):

        protein_seq1 = self.protein_seq1[query_idx]
        protein_seq2 = self.protein_seq2[query_idx]
        score = self.scores[query_idx]

        return protein_seq1, protein_seq2, score

    def __len__(self):
        return len(self.protein_seq1)


class DDA_Dataset(Dataset):
    """
    Candidate Dataset for:
        ALL disease-to-disease associations
    """

    def __init__(self, diseaseDes1, diseaseDes2, label):
        self.diseaseDes1 = diseaseDes1
        self.diseaseDes2 = diseaseDes2
        self.label = label

    def __getitem__(self, query_idx):

        diseaseDes1 = self.diseaseDes1[query_idx]
        diseaseDes2 = self.diseaseDes2[query_idx]
        label = self.label[query_idx]

        return diseaseDes1, diseaseDes2, label

    def __len__(self):
        return len(self.diseaseDes1)


class DDA_Pretrain_Dataset(Dataset):
    """
    Candidate Dataset for:
        ALL protein-to-protein interactions
    """

    def __init__(self, data_dir="../../data/pretrain/", test=False):
        LOGGER.info("Initializing metric learning data set! ...")
        self.dataset_df = pd.read_csv(f"{data_dir}disgenet_dda.csv")
        self.dataset_df = self.dataset_df.dropna()  # Drop missing values.
        if test:
            self.dataset_df = self.dataset_df.sample(100)
        print(
            f"{data_dir}disgenet_dda.csv loaded, found associations: {len(self.dataset_df.index)}"
        )
        self.disease_des1 = self.dataset_df["diseaseDes1"].values
        self.disease_des2 = self.dataset_df["diseaseDes2"].values
        self.scores = len(self.dataset_df["jaccard_variant"].values) * [1]

    def __getitem__(self, query_idx):

        disease_des1 = self.disease_des1[query_idx]
        disease_des2 = self.disease_des2[query_idx]
        score = self.scores[query_idx]

        return disease_des1, disease_des2, score

    def __len__(self):
        return len(self.disease_des1)