Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,35 +1,31 @@
|
|
1 |
-
import torch
|
2 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
import streamlit as st
|
|
|
4 |
|
5 |
-
# Load
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
# Encode the input prompt
|
13 |
-
input_ids = tokenizer.encode(prompt, return_tensors="pt")
|
14 |
-
|
15 |
-
# Generate response
|
16 |
-
with torch.no_grad():
|
17 |
-
output = model.generate(input_ids, max_length=150, num_return_sequences=1)
|
18 |
|
19 |
-
|
20 |
-
|
|
|
|
|
21 |
return response
|
22 |
|
23 |
-
# Streamlit
|
24 |
-
|
25 |
-
st.
|
|
|
|
|
|
|
26 |
|
27 |
-
|
28 |
-
|
|
|
|
|
29 |
|
30 |
-
if
|
31 |
-
|
32 |
-
response = chat_with_bot(user_input)
|
33 |
-
st.text_area("Chatbot:", value=response, height=100, disabled=True)
|
34 |
-
else:
|
35 |
-
st.text_area("Chatbot:", value="Please type a message!", height=100, disabled=True)
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
|
4 |
+
# Load model and tokenizer
|
5 |
+
@st.cache_resource
|
6 |
+
def load_model():
|
7 |
+
model_name = "microsoft/Phi-3-mini-4k-instruct"
|
8 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
9 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
10 |
+
return model, tokenizer
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
+
def generate_text(prompt, model, tokenizer):
|
13 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
14 |
+
outputs = model.generate(inputs.input_ids, max_length=300, temperature=0.7, top_k=50, top_p=0.95)
|
15 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
16 |
return response
|
17 |
|
18 |
+
# Streamlit app
|
19 |
+
def main():
|
20 |
+
st.title("Instruction-Following Model: Phi-3-Mini-4k-Instruct")
|
21 |
+
st.write("Ask a question or give an instruction to get a response.")
|
22 |
+
|
23 |
+
model, tokenizer = load_model()
|
24 |
|
25 |
+
prompt = st.text_input("Enter your prompt:", "Explain the concept of machine learning in simple terms.")
|
26 |
+
if st.button("Generate Response"):
|
27 |
+
response = generate_text(prompt, model, tokenizer)
|
28 |
+
st.write(response)
|
29 |
|
30 |
+
if __name__ == "__main__":
|
31 |
+
main()
|
|
|
|
|
|
|
|