import streamlit as st from transformers import AutoTokenizer, AutoModelForCausalLM # Load the model and tokenizer model_name = "premai-io/prem-1B-SQL" model = AutoModelForCausalLM.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) # Function to generate SQL from the user's input def generate_sql_query(question): input_text = f"Question: {question} SQL Query:" # Tokenize the input inputs = tokenizer(input_text, return_tensors="pt", padding=True, truncation=True) # Generate the SQL query outputs = model.generate(inputs["input_ids"], max_length=100) # Decode the output sql_query = tokenizer.decode(outputs[0], skip_special_tokens=True) return sql_query # Streamlit app UI def main(): st.title("Text-to-SQL with prem-1B-SQL Model") st.write("This app generates SQL queries based on your natural language question.") # Input for the user's question question_input = st.text_input("Enter your question:") if question_input: # Generate the SQL query sql_query = generate_sql_query(question_input) # Display the generated SQL query st.write("Generated SQL Query:") st.code(sql_query) if __name__ == "__main__": main()