Spaces:
Sleeping
Sleeping
from fastapi import FastAPI, HTTPException | |
from fastapi.middleware.cors import CORSMiddleware | |
from pydantic import BaseModel | |
import joblib | |
import numpy as np | |
app = FastAPI() | |
app.add_middleware( | |
CORSMiddleware, | |
allow_origins=["*"], # Allows all origins | |
allow_credentials=True, | |
allow_methods=["*"], # Allows all methods | |
allow_headers=["*"], # Allows all headers | |
) | |
# Loading the model | |
model = joblib.load("soil_npk_joblib_model.joblib") | |
class InputData(BaseModel): | |
crop_name: str | |
target_yield: float | |
field_size: float | |
ph: float | |
organic_carbon: float | |
nitrogen: float | |
phosphorus: float | |
potassium: float | |
soil_moisture: float | |
async def predict(data: InputData): | |
try: | |
input_data = np.array([[ | |
data.target_yield, | |
data.field_size, | |
data.ph, | |
data.organic_carbon, | |
data.nitrogen, | |
data.phosphorus, | |
data.potassium, | |
data.soil_moisture | |
]]) | |
prediction = model.predict(input_data) | |
return { | |
"nitrogen_need": float(prediction[0][0]), | |
"phosphorus_need": float(prediction[0][1]), | |
"potassium_need": float(prediction[0][2]), | |
"organic_matter_need": float(prediction[0][3]), | |
"lime_need": float(prediction[0][4]) | |
} | |
except Exception as e: | |
raise HTTPException(status_code=500, detail=str(e)) | |
async def root(): | |
return {"message": "NPK Needs Prediction API"} |