ngebodh commited on
Commit
9f54a3b
·
verified ·
1 Parent(s): 8fc9175

Initial setup

Browse files

Initial file set up

Files changed (1) hide show
  1. app.py +107 -0
app.py ADDED
@@ -0,0 +1,107 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ from openai import OpenAI
3
+ import os
4
+ import sys
5
+ from langchain.callbacks import StreamlitCallbackHandler
6
+ from dotenv import load_dotenv, dotenv_values
7
+ load_dotenv()
8
+
9
+
10
+ if 'key' not in st.session_state:
11
+ st.session_state['key'] = 'value'
12
+
13
+
14
+
15
+
16
+ # initialize the client but point it to TGI
17
+ client = OpenAI(
18
+ base_url="https://api-inference.huggingface.co/v1",
19
+ #api_key=os.environ.get('HUGGINGFACEHUB_API_TOKEN')#"hf_xxx" # Replace with your token
20
+ )
21
+
22
+
23
+
24
+
25
+ #Create supported models
26
+ model_links ={
27
+ "Mistral":"mistralai/Mistral-7B-Instruct-v0.2",
28
+ "Gemma":"google/gemma-7b-it"
29
+
30
+ }
31
+
32
+
33
+
34
+ # Define the available models
35
+ # models = ["Mistral", "Gemma"]
36
+ models =[key for key in model_links.keys()]
37
+
38
+ # Create the sidebar with the dropdown for model selection
39
+ selected_model = st.sidebar.selectbox("Select Model", models)
40
+
41
+
42
+
43
+ #Pull in the model we want to use
44
+ repo_id = model_links[selected_model]
45
+
46
+
47
+
48
+ st.title(f'ChatBot Using {selected_model}')
49
+
50
+ # Set a default model
51
+ if selected_model not in st.session_state:
52
+ st.session_state[selected_model] = model_links[selected_model] #"google/gemma-7b-it"
53
+
54
+ # Initialize chat history
55
+ if "messages" not in st.session_state:
56
+ st.session_state.messages = []
57
+
58
+
59
+ # Display chat messages from history on app rerun
60
+ for message in st.session_state.messages:
61
+ with st.chat_message(message["role"]):
62
+ st.markdown(message["content"])
63
+
64
+
65
+
66
+ # Accept user input
67
+ if prompt := st.chat_input("What is up?"):
68
+
69
+ # Display user message in chat message container
70
+ with st.chat_message("user"):
71
+ st.markdown(prompt)
72
+ # Add user message to chat history
73
+ st.session_state.messages.append({"role": "user", "content": prompt})
74
+
75
+
76
+ # Display assistant response in chat message container
77
+ with st.chat_message("assistant"):
78
+ st_callback = StreamlitCallbackHandler(st.container())
79
+ # st_callback =stream_handler
80
+
81
+
82
+ # stream = client.completions.create(
83
+ # model="google/gemma-7b-it",
84
+ # prompt="You are a helpful agent in a question answer exhange. Give you best answer to the questions. {prompt}",
85
+ # # messages=[
86
+ # # {"role": m["role"], "content": m["content"]}
87
+ # # for m in st.session_state.messages
88
+ # # ],
89
+ # temperature=0.5,
90
+ # stream=True,
91
+ # max_tokens=3000
92
+ # )
93
+
94
+
95
+ stream = client.chat.completions.create(
96
+ model=model_links[selected_model],#"google/gemma-7b-it",
97
+ messages=[
98
+ {"role": m["role"], "content": m["content"]}
99
+ for m in st.session_state.messages
100
+ ],
101
+ temperature=0.5,
102
+ stream=True,
103
+ max_tokens=3000,
104
+ )
105
+
106
+ response = st.write_stream(stream)
107
+ st.session_state.messages.append({"role": "assistant", "content": response})