File size: 1,472 Bytes
2a280a9 0b13e14 0889c17 2a280a9 0b13e14 0889c17 03729de 2a280a9 0e6b468 2a280a9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 |
from PIL import Image
from transformers import AutoProcessor, AutoModelForPreTraining
import streamlit as st
from PIL import Image
# import cv2
# import requests
# from dotenv import load_dotenv
# import google.generativeai as genai
# from langchain_google_genai import ChatGoogleGenerativeAI
import pandas as pd
# from huggingface_hub import login
import os
print(os.getenv('hftoken'))
processor = AutoProcessor.from_pretrained("google/paligemma-3b-pt-224")
model = AutoModelForPreTraining.from_pretrained("google/paligemma-3b-pt-224")
st.title("Image segmentation and object analysis")
uploaded_file = st.file_uploader("Choose an image")
if uploaded_file is not None:
image_data = uploaded_file.read()
st.image(image_data)
st.write("file uploaded")
image = Image.open(uploaded_file)
# Specify the file path to save the image
filepath = "./uploaded_image.jpg"
# Save the image
image.save(filepath)
st.success(f"Image saved successfully at {filepath}")
prompt = "Describe the image content in detail."
# Preprocess the image and prompt using the processor
inputs = processor( text=prompt, images=image, return_tensors="pt")
# Pass the inputs to the model
outputs = model(**inputs)
# Assuming you have the output stored in a variable called `outputs`
generated_text = processor.decode(outputs.logits.argmax(dim=-1)[0], skip_special_tokens=True)
print(generated_text)
st.write(generated_text) |