Spaces:
Running
on
Zero
Running
on
Zero
File size: 8,004 Bytes
f5a0315 e2bd985 fbad7a8 a7b7439 58cc205 fbad7a8 f88edf5 4e67073 e2bd985 4e67073 f5a0315 e2bd985 fbad7a8 58cc205 e2bd985 58cc205 fbad7a8 58cc205 fbad7a8 e0b6027 58cc205 e0b6027 58cc205 e0b6027 58cc205 e0b6027 58cc205 fbad7a8 326dd31 fbad7a8 e2bd985 58cc205 e2bd985 58cc205 e2bd985 58cc205 fd55a71 58cc205 e2bd985 58cc205 e2bd985 58cc205 e2bd985 58cc205 dbb5354 58cc205 fbad7a8 58cc205 fbad7a8 6c9dbcd 58cc205 fbad7a8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 |
###########################################################################################
# Code based on the Hugging Face Space of Depth Anything v2
# https://huggingface.co/spaces/depth-anything/Depth-Anything-V2/blob/main/app.py
###########################################################################################
import gradio as gr
import cv2
import matplotlib
import numpy as np
import os
from PIL import Image
import spaces
import torch
import tempfile
from gradio_imageslider import ImageSlider
from huggingface_hub import hf_hub_download
from GeoWizard.geowizard.models.geowizard_pipeline import DepthNormalEstimationPipeline
from GeoWizard.geowizard.models.unet_2d_condition import UNet2DConditionModel
from diffusers import DDIMScheduler, AutoencoderKL
from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection
css = """
#img-display-container {
max-height: 100vh;
}
#img-display-input {
max-height: 80vh;
}
#img-display-output {
max-height: 80vh;
}
#download {
height: 62px;
}
"""
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
checkpoint_path = "GonzaloMG/geowizard-e2e-ft"
vae = AutoencoderKL.from_pretrained(checkpoint_path, subfolder='vae')
scheduler = DDIMScheduler.from_pretrained(checkpoint_path, timestep_spacing="trailing", subfolder='scheduler')
image_encoder = CLIPVisionModelWithProjection.from_pretrained(checkpoint_path, subfolder="image_encoder")
feature_extractor = CLIPImageProcessor.from_pretrained(checkpoint_path, subfolder="feature_extractor")
unet = UNet2DConditionModel.from_pretrained(checkpoint_path, subfolder="unet")
pipe = DepthNormalEstimationPipeline(vae=vae,
image_encoder=image_encoder,
feature_extractor=feature_extractor,
unet=unet,
scheduler=scheduler)
pipe = pipe.to(DEVICE)
pipe.unet.eval()
title = "# End-to-End Fine-Tuned GeoWizard"
description = """ Please refer to our [paper](https://arxiv.org/abs/2409.11355) and [GitHub](https://vision.rwth-aachen.de/diffusion-e2e-ft) for more details."""
@spaces.GPU
def predict(image, processing_res_choice):
with torch.no_grad():
pipe_out = pipe(image, denoising_steps=1, ensemble_size=1, noise="zeros", processing_res=processing_res_choice, match_input_res=True)
# depth
depth_pred = pipe_out.depth_np
depth_colored = pipe_out.depth_colored
# normals
normal_pred = pipe_out.normal_np
normal_colored = pipe_out.normal_colored
return depth_pred, depth_colored, normal_pred, normal_colored
with gr.Blocks(css=css) as demo:
gr.Markdown(title)
gr.Markdown(description)
gr.Markdown("### Depth and Normals Prediction demo")
with gr.Row():
input_image = gr.Image(label="Input Image", type='numpy', elem_id='img-display-input')
processing_res_choice = gr.Radio(
[
("Native", 0),
("Recommended", 768),
],
label="Processing resolution",
value=0,
)
model_choice = gr.Dropdown(
list(models.keys()), label="Select Model", value=list(models.keys())[0]
)
submit = gr.Button(value="Compute Depth and Normals")
with gr.Row():
depth_image_slider = ImageSlider(label="Depth Map with Slider View", elem_id='img-display-output', position=0.5)
normal_image_slider = ImageSlider(label="Normal Map with Slider View", elem_id='normal-display-output', position=0.5)
colored_depth_file = gr.File(label="Colored Depth Image", elem_id="download")
gray_depth_file = gr.File(label="Grayscale Depth Map", elem_id="download")
raw_depth_file = gr.File(label="Raw Depth Data (.npy)", elem_id="download")
colored_normal_file = gr.File(label="Colored Normal Image", elem_id="download")
raw_normal_file = gr.File(label="Raw Normal Data (.npy)", elem_id="download")
# with gr.Row():
# input_image = gr.Image(label="Input Image", type='numpy', elem_id='img-display-input')
# depth_image_slider = ImageSlider(label="Depth Map with Slider View", elem_id='img-display-output', position=0.5)
# with gr.Row():
# submit = gr.Button(value="Compute Depth")
# processing_res_choice = gr.Radio(
# [
# ("Recommended (768)", 768),
# ("Native", 0),
# ],
# label="Processing resolution",
# value=768,
# )
# gray_depth_file = gr.File(label="Grayscale depth map", elem_id="download",)
# raw_file = gr.File(label="Raw Depth Data (.npy)", elem_id="download")
cmap = matplotlib.colormaps.get_cmap('Spectral_r')
def on_submit(image, processing_res_choice):
if image is None:
print("No image uploaded.")
return None
pil_image = Image.fromarray(image.astype('uint8'))
depth_pred, depth_colored, normal_pred, normal_colored = predict(pil_image, processing_res, model_choice, current_model)
# Save depth and normals npy data
tmp_npy_depth = tempfile.NamedTemporaryFile(suffix='.npy', delete=False)
np.save(tmp_npy_depth.name, depth_pred)
tmp_npy_normal = tempfile.NamedTemporaryFile(suffix='.npy', delete=False)
np.save(tmp_npy_normal.name, normal_pred)
# Save the grayscale depth map
depth_gray = (depth_pred * 65535.0).astype(np.uint16)
tmp_gray_depth = tempfile.NamedTemporaryFile(suffix='.png', delete=False)
Image.fromarray(depth_gray).save(tmp_gray_depth.name, mode="I;16")
# Save the colored depth and normals maps
tmp_colored_depth = tempfile.NamedTemporaryFile(suffix='.png', delete=False)
depth_colored.save(tmp_colored_depth.name)
tmp_colored_normal = tempfile.NamedTemporaryFile(suffix='.png', delete=False)
normal_colored.save(tmp_colored_normal.name)
return (
(pil_image, depth_colored), # For ImageSlider: (base image, overlay image)
(pil_image, normal_colored), # For gr.Image
tmp_colored_depth.name, # File outputs
tmp_gray_depth.name,
tmp_npy_depth.name,
tmp_colored_normal.name,
tmp_npy_normal.name
)
# pil_image = Image.fromarray(image.astype('uint8'))
# depth_npy, depth_colored = predict_depth(pil_image, processing_res_choice)
# # Save the npy data (raw depth map)
# tmp_npy_depth = tempfile.NamedTemporaryFile(suffix='.npy', delete=False)
# np.save(tmp_npy_depth.name, depth_npy)
# # Save the grayscale depth map
# depth_gray = (depth_npy * 65535.0).astype(np.uint16)
# tmp_gray_depth = tempfile.NamedTemporaryFile(suffix='.png', delete=False)
# Image.fromarray(depth_gray).save(tmp_gray_depth.name, mode="I;16")
# # Save the colored depth map
# tmp_colored_depth = tempfile.NamedTemporaryFile(suffix='.png', delete=False)
# depth_colored.save(tmp_colored_depth.name)
# return [(image, depth_colored), tmp_gray_depth.name, tmp_npy_depth.name]
submit.click(on_submit, inputs=[input_image, processing_res_choice], outputs=[depth_image_slider,normal_image_slider,colored_depth_file,gray_depth_file,raw_depth_file,colored_normal_file,raw_normal_file])
example_files = os.listdir('assets/examples')
example_files.sort()
example_files = [os.path.join('assets/examples', filename) for filename in example_files]
example_files = [[image, 768] for image in example_files]
examples = gr.Examples(examples=example_files, inputs=[input_image, processing_res_choice], outputs=[depth_image_slider,normal_image_slider,colored_depth_file,gray_depth_file,raw_depth_file,colored_normal_file,raw_normal_file], fn=on_submit)
if __name__ == '__main__':
demo.queue().launch(share=True) |