GonzaloMG's picture
Update app.py
d9aedc1 verified
###########################################################################################
# Code based on the Hugging Face Space of Depth Anything v2
# https://huggingface.co/spaces/depth-anything/Depth-Anything-V2/blob/main/app.py
###########################################################################################
import gradio as gr
import cv2
import matplotlib
import numpy as np
import os
from PIL import Image
import spaces
import torch
import tempfile
from gradio_imageslider import ImageSlider
from huggingface_hub import hf_hub_download
from GeoWizard.geowizard.models.geowizard_pipeline import DepthNormalEstimationPipeline
from GeoWizard.geowizard.models.unet_2d_condition import UNet2DConditionModel
from diffusers import DDIMScheduler, AutoencoderKL
from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection
css = """
#img-display-container {
max-height: 100vh;
}
#img-display-input {
max-height: 80vh;
}
#img-display-output {
max-height: 80vh;
}
#download {
height: 62px;
}
"""
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
checkpoint_path = "GonzaloMG/geowizard-e2e-ft"
vae = AutoencoderKL.from_pretrained(checkpoint_path, subfolder='vae')
scheduler = DDIMScheduler.from_pretrained(checkpoint_path, timestep_spacing="trailing", subfolder='scheduler')
image_encoder = CLIPVisionModelWithProjection.from_pretrained(checkpoint_path, subfolder="image_encoder")
feature_extractor = CLIPImageProcessor.from_pretrained(checkpoint_path, subfolder="feature_extractor")
unet = UNet2DConditionModel.from_pretrained(checkpoint_path, subfolder="unet")
pipe = DepthNormalEstimationPipeline(vae=vae,
image_encoder=image_encoder,
feature_extractor=feature_extractor,
unet=unet,
scheduler=scheduler)
pipe = pipe.to(DEVICE)
pipe.unet.eval()
title = "# End-to-End Fine-Tuned GeoWizard"
description = """ Please refer to our [paper](https://arxiv.org/abs/2409.11355) and [GitHub](https://vision.rwth-aachen.de/diffusion-e2e-ft) for more details."""
@spaces.GPU
def predict(image, processing_res_choice):
with torch.no_grad():
pipe_out = pipe(image, denoising_steps=1, ensemble_size=1, noise="zeros", processing_res=processing_res_choice, match_input_res=True)
# depth
depth_pred = pipe_out.depth_np
depth_colored = pipe_out.depth_colored
# normals
normal_pred = pipe_out.normal_np
normal_colored = pipe_out.normal_colored
return depth_pred, depth_colored, normal_pred, normal_colored
with gr.Blocks(css=css) as demo:
gr.Markdown(title)
gr.Markdown(description)
gr.Markdown("### Depth and Normals Prediction demo")
with gr.Row():
depth_image_slider = ImageSlider(label="Depth Map with Slider View", elem_id='img-display-output', position=0.5)
normal_image_slider = ImageSlider(label="Normal Map with Slider View", elem_id='normal-display-output', position=0.5)
with gr.Row():
input_image = gr.Image(label="Input Image", type='numpy', elem_id='img-display-input')
with gr.Column():
processing_res_choice = gr.Radio(
[
("Recommended (768)", 768),
("Native", 0),
],
label="Processing resolution",
value=768,
)
submit = gr.Button(value="Compute Depth and Normals")
colored_depth_file = gr.File(label="Colored Depth Image", elem_id="download")
gray_depth_file = gr.File(label="Grayscale Depth Map", elem_id="download")
raw_depth_file = gr.File(label="Raw Depth Data (.npy)", elem_id="download")
colored_normal_file = gr.File(label="Colored Normal Image", elem_id="download")
raw_normal_file = gr.File(label="Raw Normal Data (.npy)", elem_id="download")
cmap = matplotlib.colormaps.get_cmap('Spectral_r')
def on_submit(image, processing_res_choice):
if image is None:
print("No image uploaded.")
return None
pil_image = Image.fromarray(image.astype('uint8'))
depth_pred, depth_colored, normal_pred, normal_colored = predict(pil_image, processing_res_choice)
# Save depth and normals npy data
tmp_npy_depth = tempfile.NamedTemporaryFile(suffix='.npy', delete=False)
np.save(tmp_npy_depth.name, depth_pred)
tmp_npy_normal = tempfile.NamedTemporaryFile(suffix='.npy', delete=False)
np.save(tmp_npy_normal.name, normal_pred)
# Save the grayscale depth map
depth_gray = (depth_pred * 65535.0).astype(np.uint16)
tmp_gray_depth = tempfile.NamedTemporaryFile(suffix='.png', delete=False)
Image.fromarray(depth_gray).save(tmp_gray_depth.name, mode="I;16")
# Save the colored depth and normals maps
tmp_colored_depth = tempfile.NamedTemporaryFile(suffix='.png', delete=False)
depth_colored.save(tmp_colored_depth.name)
tmp_colored_normal = tempfile.NamedTemporaryFile(suffix='.png', delete=False)
normal_colored.save(tmp_colored_normal.name)
return (
(pil_image, depth_colored), # For ImageSlider: (base image, overlay image)
(pil_image, normal_colored), # For gr.Image
tmp_colored_depth.name, # File outputs
tmp_gray_depth.name,
tmp_npy_depth.name,
tmp_colored_normal.name,
tmp_npy_normal.name
)
submit.click(on_submit, inputs=[input_image, processing_res_choice], outputs=[depth_image_slider,normal_image_slider,colored_depth_file,gray_depth_file,raw_depth_file,colored_normal_file,raw_normal_file])
example_files = os.listdir('assets/examples')
example_files.sort()
example_files = [os.path.join('assets/examples', filename) for filename in example_files]
example_files = [[image, 768] for image in example_files]
examples = gr.Examples(examples=example_files, inputs=[input_image, processing_res_choice], outputs=[depth_image_slider,normal_image_slider,colored_depth_file,gray_depth_file,raw_depth_file,colored_normal_file,raw_normal_file], fn=on_submit)
if __name__ == '__main__':
demo.queue().launch(share=True)